

POLYTECHNIQUE Montréal

UNIVERSITÉ D'INGÉNIERIE

Low-Rank Matrix and Tensor Methods for Spatiotemporal Traffic Data Modeling

Xinyu Chen

University of Montreal, Canada

May 22, 2023

Ph.D. Candidate Xinyu Chen

Supervisor Prof. Nicolas Saunier

Co-supervisor Prof. Lijun Sun (McGill)

Outline

Spatiotemporal Traffic Data

Preliminaries: What are matrix & tensor? Traffic data & representation & problems

• Spatiotemporal Traffic Data Imputation

Laplacian convolutional representation

Sparse Traffic Flow Forecasting Uber movement speed data Temporal matrix factorization

Dynamic Pattern Discovery Human mobility changes over COVID-19 Time-varying low-rank autoregression

Conclusion

• What is tensor? $\boldsymbol{X} \in \mathbb{R}^{m imes n}$ vs. $\boldsymbol{\mathcal{X}} \in \mathbb{R}^{m imes n imes t}$

• What is tensor? $X \in \mathbb{R}^{m \times n}$ vs. $\mathcal{X} \in \mathbb{R}^{m \times n \times t}$

• Tensors are everywhere!

Color image with RGB channels

Dynamical system (fluid flow)

Spatiotemporal Traffic Data

• Spatiotemporal traffic data are indeed matrices or tensors.

Spatiotemporal Traffic Data

 X. Chen, Z. Cheng, N. Saunier, L. Sun (2022). Laplacian convolutional representation for traffic time series imputation. arXiv preprint arXiv:2212.01529. Motivation:

• Global trends (e.g., long-term quasi-seasonality & daily/weekly rhythm):

T2T3T $4T \quad 5T$ 6T7T

Motivation:

• Global trends (e.g., long-term quasi-seasonality & daily/weekly rhythm):

• Local trends (e.g., short-term time series trends):

• Question: How to characterize both global and local trends in sparse traffic data?

Laplacian Convolutional Representation

Reformulate Laplacian regularization with circular convolution.

• Intuition of (circulant) Laplacian matrix.

Undirected and circulant graph

		2	$^{-1}$	0	0	-1
		-1	2	$^{-1}$	0	0
Þ	L =	0	$^{-1}$	2	$^{-1}$	0
		0	0	$^{-1}$	2	-1
		-1	0	0	$^{-1}$	2
		-				_

(Circulant) Laplacian matrix

• Laplacian kernel: $\boldsymbol{\ell} = (2, -1, 0, 0, -1)^{\top}$.

Laplacian Convolutional Representation

Reformulate Laplacian regularization with circular convolution.

• Intuition of (circulant) Laplacian matrix.

Undirected and circulant graph

		2	$^{-1}$	0	0	-1
7		-1	2	$^{-1}$	0	0
⇒ →	L =	0	$^{-1}$	2	$^{-1}$	0
		0	0	$^{-1}$	2	-1
		-1	0	0	$^{-1}$	2
		L				

(Circulant) Laplacian matrix

- Laplacian kernel: $\boldsymbol{\ell} = (2, -1, 0, 0, -1)^{\top}$.
- Define Laplacian kernel:

$$\boldsymbol{\ell} \triangleq (\underbrace{2\tau}_{\text{degree}}, \underbrace{-1, \cdots, -1}_{\tau}, 0, \cdots, 0, \underbrace{-1, \cdots, -1}_{\tau})^{\top} \in \mathbb{R}^{T}$$

for any time series $\boldsymbol{x} = (x_1, \dots, x_T)^\top \in \mathbb{R}^T$.

• Local trend modeling via (Laplacian) temporal regularization:

$$\mathcal{R}_{ au}(oldsymbol{x}) = rac{1}{2} \|oldsymbol{L}oldsymbol{x}\|_2^2 = rac{1}{2} \|oldsymbol{\ell}\staroldsymbol{x}\|_2^2 = rac{1}{2T} \|\mathcal{F}(oldsymbol{\ell})\circ\mathcal{F}(oldsymbol{x})\|_2^2$$

Laplacian Convolutional Representation (LCR)

For any partially observed time series $y \in \mathbb{R}^T$ with observed index set Ω , LCR utilizes circulant matrix and Laplacian kernel to characterize global and local trends in time series, respectively, i.e.,

$$\min_{\boldsymbol{x}} \|\mathcal{C}(\boldsymbol{x})\|_* + \gamma \cdot \mathcal{R}_{\tau}(\boldsymbol{x})$$

s.t. $\|\mathcal{P}_{\Omega}(\boldsymbol{x} - \boldsymbol{y})\|_2 \leq \epsilon$

where $\mathcal{C}: \mathbb{R}^T \to \mathbb{R}^{T \times T}$ denotes the circulant operator. $\|\cdot\|_*$ denotes the nuclear norm of matrix, namely, the sum of singular values.

Laplacian Convolutional Representation

• LCR model:

$$\min_{\boldsymbol{x}} \|\mathcal{C}(\boldsymbol{x})\|_* + \gamma \cdot \mathcal{R}_{\tau}(\boldsymbol{x})$$

s.t. $\|\mathcal{P}_{\Omega}(\boldsymbol{x} - \boldsymbol{y})\|_2 \leq \epsilon$

• Augmented Lagrangian function:

$$egin{aligned} \mathcal{L}(oldsymbol{x},oldsymbol{z},oldsymbol{w}) = & \|\mathcal{C}(oldsymbol{x})\|_* + rac{\gamma}{2} \|oldsymbol{\ell} \star oldsymbol{x}\|_2^2 + rac{\lambda}{2} \|oldsymbol{x} - oldsymbol{z}\|_2^2 \ & + \langleoldsymbol{w},oldsymbol{x} - oldsymbol{z}
angle + rac{\eta}{2} \|\mathcal{P}_\Omega(oldsymbol{z} - oldsymbol{y})\|_2^2 \end{aligned}$$

where $\bm{w} \in \mathbb{R}^T$ is the Lagrange multiplier, and $\langle \cdot, \cdot \rangle$ denotes the inner product.

Laplacian Convolutional Representation

• LCR model:

$$\min_{\boldsymbol{x}} \|\mathcal{C}(\boldsymbol{x})\|_* + \gamma \cdot \mathcal{R}_{\tau}(\boldsymbol{x})$$

s.t. $\|\mathcal{P}_{\Omega}(\boldsymbol{x} - \boldsymbol{y})\|_2 \leq \epsilon$

• Augmented Lagrangian function:

$$egin{aligned} \mathcal{L}(oldsymbol{x},oldsymbol{z},oldsymbol{w}) = & \|\mathcal{C}(oldsymbol{x})\|_* + rac{\gamma}{2}\|oldsymbol{\ell}\staroldsymbol{x}\|_2^2 + rac{\lambda}{2}\|oldsymbol{x}-oldsymbol{z}\|_2^2 \ & + \langleoldsymbol{w},oldsymbol{x}-oldsymbol{z}
angle + rac{\eta}{2}\|\mathcal{P}_\Omega(oldsymbol{z}-oldsymbol{y})\|_2^2 \end{aligned}$$

where $\bm{w} \in \mathbb{R}^T$ is the Lagrange multiplier, and $\langle \cdot, \cdot \rangle$ denotes the inner product.

• The ADMM scheme:

$$\begin{cases} \boldsymbol{x} := \arg\min_{\boldsymbol{x}} \ \mathcal{L}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{w}) \\ \boldsymbol{z} := \arg\min_{\boldsymbol{z}} \ \mathcal{L}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{w}) \\ = \frac{1}{\lambda + \eta} \mathcal{P}_{\Omega}(\lambda \boldsymbol{x} + \boldsymbol{w} + \eta \boldsymbol{y}) + \frac{1}{\lambda} \mathcal{P}_{\Omega}^{\perp}(\lambda \boldsymbol{x} + \boldsymbol{w}) \\ \boldsymbol{w} := \boldsymbol{w} + \lambda(\boldsymbol{x} - \boldsymbol{z}) \end{cases}$$

• Optimize x via fast Fourier transform (FFT in $\mathcal{O}(T \log T)$ time):

$$oldsymbol{x} := rgmin_{oldsymbol{x}} \|\mathcal{C}(oldsymbol{x})\|_* + rac{\gamma}{2} \|oldsymbol{\ell} \star oldsymbol{x}\|_2^2 + rac{\lambda}{2} \|oldsymbol{x} - oldsymbol{z} + oldsymbol{w}/\lambda\|_2^2$$

• Optimize x via fast Fourier transform (FFT in $\mathcal{O}(T \log T)$ time):

$$\begin{aligned} \boldsymbol{x} &:= \arg\min_{\boldsymbol{x}} \ \|\mathcal{C}(\boldsymbol{x})\|_{*} + \frac{\gamma}{2} \|\boldsymbol{\ell} \star \boldsymbol{x}\|_{2}^{2} + \frac{\lambda}{2} \|\boldsymbol{x} - \boldsymbol{z} + \boldsymbol{w}/\lambda\|_{2}^{2} \\ \Longrightarrow \hat{\boldsymbol{x}} &:= \arg\min_{\hat{\boldsymbol{x}}} \ \|\hat{\boldsymbol{x}}\|_{1} + \frac{\gamma}{2T} \|\hat{\boldsymbol{\ell}} \circ \hat{\boldsymbol{x}}\|_{2}^{2} + \frac{\lambda}{2T} \|\hat{\boldsymbol{x}} - \hat{\boldsymbol{z}} + \hat{\boldsymbol{w}}/\lambda\|_{2}^{2} \end{aligned}$$

where $\{\hat{\ell}, \hat{x}, \hat{z}, \hat{w}\}$ refers to $\{\ell, x, z, w\}$ in the frequency domain.

• Optimize \boldsymbol{x} via fast Fourier transform (FFT in $\mathcal{O}(T \log T)$ time):

$$\begin{split} \boldsymbol{x} &:= \arg\min_{\boldsymbol{x}} \ \|\mathcal{C}(\boldsymbol{x})\|_{*} + \frac{\gamma}{2} \|\boldsymbol{\ell} \star \boldsymbol{x}\|_{2}^{2} + \frac{\lambda}{2} \|\boldsymbol{x} - \boldsymbol{z} + \boldsymbol{w}/\lambda\|_{2}^{2} \\ \Longrightarrow \hat{\boldsymbol{x}} &:= \arg\min_{\hat{\boldsymbol{x}}} \ \|\hat{\boldsymbol{x}}\|_{1} + \frac{\gamma}{2T} \|\hat{\boldsymbol{\ell}} \circ \hat{\boldsymbol{x}}\|_{2}^{2} + \frac{\lambda}{2T} \|\hat{\boldsymbol{x}} - \hat{\boldsymbol{z}} + \hat{\boldsymbol{w}}/\lambda\|_{2}^{2} \end{split}$$

where $\{\hat{\bm{\ell}}, \hat{\bm{x}}, \hat{\bm{z}}, \hat{\bm{w}}\}$ refers to $\{\bm{\ell}, \bm{x}, \bm{z}, \bm{w}\}$ in the frequency domain.

ℓ_1 -norm Minimization in Complex Space (Liu & Zhang'22)

For any optimization problem in the form of $\ell_1\mbox{-norm}$ minimization in complex space:

$$\min_{\hat{m{x}}} \ \|\hat{m{x}}\|_1 + rac{\omega}{2} \|\hat{m{x}} - \hat{m{h}}\|_2^2$$

with complex-valued $\hat{x}, \hat{h} \in \mathbb{C}^T$, element-wise, the solution is given by

$$\hat{x}_t := \frac{\hat{h}_t}{|\hat{h}_t|} \cdot \max\{0, |\hat{h}_t| - 1/\omega\}, t = 1, \dots, T.$$

• On traffic speed time series:

LCR can characterize both global and local trends and produce accurate results.

- X. Chen, L. Sun (2022). Bayesian temporal factorization for multidimensional time series prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44 (9): 4659–4673.
 - $\circ~$ 100+ citations on Google Scholar
 - ESI highly cited paper (top 1%)
 - ESI hot paper (top 0.1%)
- X. Chen, C. Zhang, X.-L. Zhao, N. Saunier, L. Sun (2022). Nonstationary temporal matrix factorization for sparse traffic time series forecasting. arXiv preprint arXiv:2203.10651.

Motivation:

• Uber (hourly) movement speed data¹

- The average speed on a given road segment for each hour of each day.
- Hourly speeds are computed when road segments have 5+ unique trips.
- Issue: insufficient sampling of ridesharing vehicles on the road network.

¹https://movement.uber.com/

High-dimensionality & Sparsity

- NYC movement speed data (2019)
 - o 98,210 road segments & 8,760 time steps (hours)
 - Whole missing rate: 64.43%

High-dimensionality & Sparsity

- NYC movement speed data (2019)
 - o 98,210 road segments & 8,760 time steps (hours)
 - Whole missing rate: 64.43%

• Seattle movement speed data (2019)

- 63,490 road segments & 8,760 time steps (hours)
- Whole missing rate: 84.95%

• Spatiotemporal data can be reconstructed by low-dimensional latent factors!

• MF optimization problem

$$\min_{\boldsymbol{W},\boldsymbol{X}} \frac{1}{2} \left\| \mathcal{P}_{\Omega}(\boldsymbol{Y} - \boldsymbol{W}^{\top}\boldsymbol{X}) \right\|_{F}^{2} + \frac{\rho}{2} \left(\|\boldsymbol{W}\|_{F}^{2} + \|\boldsymbol{X}\|_{F}^{2} \right)$$

with factor matrices $oldsymbol{W}$ and $oldsymbol{X}$.

- Disadvantages:
 - Cannot capture temporal correlations.
 - $\circ~$ Cannot perform time series forecasting.

Temporal matrix factorization (Yu et al.'16; Chen & Sun'22)

Given any partially observed time series data $\boldsymbol{Y} \in \mathbb{R}^{N \times T}$ with observed index set Ω , then temporal matrix factorization assumes a *d*th-order vector autoregressive (VAR) process on the temporal factor matrix:

$$\min_{\boldsymbol{W},\boldsymbol{X},\{\boldsymbol{A}_k\}_{k=1}^d} \frac{1}{2} \left\| \mathcal{P}_{\Omega}(\boldsymbol{Y} - \boldsymbol{W}^{\top}\boldsymbol{X}) \right\|_F^2 + \frac{\rho}{2} (\|\boldsymbol{W}\|_F^2 + \|\boldsymbol{X}\|_F^2) \\ + \frac{\lambda}{2} \sum_{t=d+1}^T \left\| \boldsymbol{x}_t - \sum_{k=1}^d \boldsymbol{A}_k \boldsymbol{x}_{t-k} \right\|_2^2$$

GitHub repositories:

- transdim: Machine learning for spatiotemporal traffic data imputation and forecasting. (970+ stars & 270+ forks) https://github.com/xinychen/transdim
- tracebase: Multivariate time series forecasting on high-dimensional and sparse Uber movement speed data. (30+ stars) https://github.com/xinychen/tracebase
- awesome-latex-drawing: Academic drawing examples in LaTeX. (1,000+ stars & 140+ forks)

https://github.com/xinychen/awesome-latex-drawing

 X. Chen, C. Zhang[†], X. Chen, N. Saunier, L. Sun (2022). Discovering dynamic patterns from spatiotemporal data with time-varying low-rank autoregression. arXiv preprint arXiv:2211.15482.

(Under 2nd review at IEEE Transactions on Knowledge and Data Engineering)

Dynamic Pattern Discovery

Motivation:

• NYC (yellow) taxi data²

• How to characterize the dynamic patterns?

²https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

• Given a sequence of spatiotemporal measurements $\boldsymbol{y}_t \in \mathbb{R}^N, t = 1, 2, \dots, T$ $\min \quad \frac{1}{2} \sum \|\boldsymbol{u}_t - \boldsymbol{A}_t \boldsymbol{u}_t\|^2$

$$\min_{\{\boldsymbol{A}_t\}} \underbrace{\frac{1}{2} \sum_t \|\boldsymbol{y}_t - \boldsymbol{A}_t \boldsymbol{y}_{t-1}\|_2^2}_{-}$$

Time-varying autoregression

• A sequence of coefficient matrices $\{A_t\}$ of size $N \times N$.

[Over-parameterization] $\mathcal{O}(N^2(T-1))$ parameters vs. $\mathcal{O}(NT)$ data.

• CP decomposition: Factorize $\boldsymbol{\mathcal{Y}}$ into the combination of rank-R factor matrices, i.e., $\boldsymbol{\mathcal{Y}} \approx \sum_{r=1}^{R} \boldsymbol{u}_r \otimes \boldsymbol{v}_r \otimes \boldsymbol{x}_r.$

• (Ours) Parameterize coefficients via tensor factorization (TF):

$$\min_{\boldsymbol{W},\boldsymbol{G},\boldsymbol{V},\boldsymbol{X}} \underbrace{\frac{1}{2} \sum_{t} \left\| \boldsymbol{y}_{t} - \boldsymbol{W} \boldsymbol{G} (\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V})^{\top} \boldsymbol{y}_{t-1} \right\|_{2}^{2}}_{\text{Let } \boldsymbol{A}_{t} = \boldsymbol{\mathcal{G}} \times_{1} \boldsymbol{W} \times_{2} \boldsymbol{V} \times_{3} \boldsymbol{x}_{t}^{\top} \text{ be the TF}}$$

• Alternating minimization (Let f be the obj.)

$$egin{aligned} m{W} &:= \{m{W} \mid rac{\partial f}{\partial m{W}} = m{0}\} & m{G} &:= \{m{G} \mid rac{\partial f}{\partial m{G}} = m{0}\} \ m{V} &:= \{m{V} \mid rac{\partial f}{\partial m{V}} = m{0}\} & m{x}_t &:= \{m{x}_t \mid rac{\partial f}{\partial m{x}_t} = m{0}\} \end{aligned}$$

Solve each subproblem by conjugate gradient and least squares.

• Time-varying autoregression with TF

$$\min_{\boldsymbol{W},\boldsymbol{G},\boldsymbol{V},\boldsymbol{X}} \ \frac{1}{2} \sum_{t} \left\| \boldsymbol{y}_t - \boldsymbol{W} \boldsymbol{G} (\boldsymbol{x}_t^\top \otimes \boldsymbol{V})^\top \boldsymbol{y}_{t-1} \right\|_2^2$$

NYC taxi dataset (pickup)

 Produce interpretable patterns and identify the changing point of system (mainly due to COVID-19). We give some studies on spatiotemporal traffic data modeling.

References

A short list:

- [Liu & Zhang'22] G. Liu and W. Zhang (2022). Recovery of future data via convolution nuclear norm minimization. IEEE Transactions on Information Theory, 69(1), 650–665.
- [Yu et al.'16] H.-F. Yu, N. Rao, and I. S. Dhillon (2016). Temporal regularized matrix factorization for high-dimensional time series prediction. Advances in neural information processing systems (NIPS).

POLYTECHNIQUE Montréal

UNIVERSITÉ D'INGÉNIERIE

Thanks for your attention!

Any Questions?

Slides: https://xinychen.github.io/slides/traffic_data_modeling_v1.pdf

About me:

- Homepage: https://xinychen.github.io
- Γ Google Scholar: user=mCrW04wAAAAJhl (700+ citations)
- G GitHub: https://github.com/xinychen (3.3k+ stars)
- Blog: https://medium.com/@xinyu.chen (70k+ views)
- How to reach me: chenxy346@gmail.com