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The Image Deblurring Problem

About the image deblurring1:
• [Significance] Image deblurring is fundamental in making pictures

sharp and useful.

• [General idea] Recovering the original and sharp image by using a
mathematical model of blurring process.

• [Fact] No hope to recover the original image exactly!

• [Technical goal] Develop efficient and reliable algorithms for
recovering as much information as possible from the given data.

• [Representation] A digital image is a two- or three-dimensional
array of numbers representing intensities on a grayscale or color
scale.

1The images and Matlab functions discussed in the book are available at
https://archive.siam.org/books/fa03/.
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The Image Deblurring Problem

A blurred picture and simple linear model.

• Sharp image vs. blurred image

• Notation: X ∈ Rm×n (desired sharp image) vs. B ∈ Rm×n

(recorded blurred image)

• A simple linear model:

◦ Suppose the blurring of the columns in the image is independent of
the blurring of the rows.

◦ Bilinear relationship: AcXA⊤
r = B
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The Image Deblurring Problem

A first attempt at deblurring.

• Recall that the simple linear model:

AcXA⊤
r = B =⇒ Xnaive = A−1

c B(A⊤
r )

−1 (1)

ignores several types of errors.

• Let
Bexact = AcXA⊤

r (2)

be the ideal (noise-free) blurred image, ignoring all kinds of errors.

• Consider small random errors (noise) in the recorded blurred image:

B = Bexact +E = AcXA⊤
r +E (3)

where E ∈ Rm×n is the noise image.
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The Image Deblurring Problem

A first attempt at deblurring.

The naive reconstruction

Recall that {
Xnaive = A−1

c B(A⊤
r )

−1

B = Bexact +E = AcXA⊤
r +E

(4)

we therefore have the naive reconstruction:

Xnaive =A−1
c B(A⊤

r )
−1

=A−1
c Bexact(A

⊤
r )

−1 +A−1
c E(A⊤

r )
−1

=X +A−1
c E(A⊤

r )
−1

(5)

• The blurred image consists of two components: the first component
is the exact image, and the second component is the inverted
noise.
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The Image Deblurring Problem

A first attempt at deblurring.

• A simple test: Exact image X ∈ Rm×n vs. blurred image
B ∈ Rm×n
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The Image Deblurring Problem

Lemma

For the simple model B = AcXA⊤
r +E, the relative error in the naive

reconstruction Xnaive = A−1
c B(A⊤

r )
−1 satisfies

∥Xnaive −X∥F
∥X∥F

≤ cond(Ac) · cond(Ar) ·
∥E∥F
∥B∥F

(6)

where ∥ · ∥F denotes the Frobenius norma, and cond(·) denotes the
conditional numberb.

aFor any X ∈ Rm×n, we have ∥X∥F =
√∑m

i=1

∑n
j=1 x

2
ij .

bFor any A ∈ RN×N whose singular values are strictly positive, namely,
σ1 ≥ · · · ≥ σN > 0, we have cond(A) = σ1/σN .
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The Image Deblurring Problem

Deblurring using a general linear model.
• In most situations, the blur is indeed linear, or at least well

approximated by a linear model.

• A general linear model via vectorization.

◦ Given sharp image X ∈ Rm×n and blurred image B ∈ Rm×n, since
the blurring is assumed to be a linear operation, there must exist a
large blurring matrix A ∈ RN×N (N = mn) such that

Ax = b (7)

with

x = vec(X) =

x1

...
xn

 ∈ RN , b = vec(B) =

b1...
bn

 ∈ RN (8)

◦ The naive approach to image deblurring is simply to solve this linear
algebraic system.
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The Image Deblurring Problem

Deblurring using a general linear model.

The naive reconstruction (matrix-form)

Recall that {
Xnaive = A−1

c B(A⊤
r )

−1

B = Bexact +E = AcXA⊤
r +E

(9)

we therefore have the naive reconstruction:

Xnaive =A−1
c B(A⊤

r )
−1

=A−1
c Bexact(A

⊤
r )

−1 +A−1
c E(A⊤

r )
−1

=X +A−1
c E(A⊤

r )
−1

(10)

The naive reconstruction (vector-form)

Vectorize blurred image B and noise image E as
bexact = vec(Bexact) = Ax and e = vec(E), respectively, then we have

xnaive = A−1b = A−1bexact +A−1e = x+A−1e (11)
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The Image Deblurring Problem

Deblurring using a general linear model.

• Relationship between matrix- and vector-form reconstruction:

Xnaive = A−1
c B(A⊤

r )
−1

=⇒ xnaive = (A−1
r ⊗A−1

c )b

= (Ar ⊗Ac)
−1b

(12)

it therefore demonstrates that A ≜ Ar ⊗Ac.

• Property of Kronecker product ⊗:

Proposition

Let A ∈ Rm×m, X ∈ Rm×n, and B ∈ Rn×n be three matrices
commensurate from multiplication in that order, then it holds that

vec(AXB) = (B⊤ ⊗A)vec(X) (13)
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The Image Deblurring Problem

Deblurring using a general linear model.

Singular value decomposition (SVD)

For any A ∈ RN×N whose singular values are strictly positive, we have

A = UΣV ⊤ =

N∑
i=1

σiuiv
⊤
i =⇒ A−1 =

N∑
i=1

1

σi
uiv

⊤
i (14)

The naive reconstruction with SVD

The naive reconstruction can be written as follows,

xnaive = A−1b = V Σ−1U⊤b =

N∑
i=1

u⊤
i b

σi
vi (15)

in which the inverted noise is

A−1e = V Σ−1U⊤e =

N∑
i=1

u⊤
i e

σi
vi (16)
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The Image Deblurring Problem

Deblurring using a general linear model.

• Recall that the inverted noise is

A−1e = V Σ−1U⊤e =

N∑
i=1

u⊤
i e

σi
vi

• Properties for image deblurring problems:

◦ The error components |u⊤
i e| are small and typically of roughly the

same order of magnitude for all i.
◦ The singular values decay to a value very close to zero. As a

consequence, the condition number cond(A) = σ1/σN is very large,
indicating that the solution is very sensitive to perturbation and
rounding errors.

◦ The singular vectors corresponding to the smaller singular
values typically represent high-frequency information. That is, as
i increases, the vectors ui and vi tend to have more sign changes.
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The Image Deblurring Problem

Deblurring using a general linear model.

• Recall that the inverted noise is

A−1e = V Σ−1U⊤e =

N∑
i=1

u⊤
i e

σi
vi

Remark

For A−1e, the quantities u⊤
i e/σi are the expansion coefficients for the

basis vectors vi. When these quantities are small in magnitude, the
solution has very little contribution from vi, but when we divide by a
small singular values such as σN , we greatly magnify the corresponding
error component u⊤

Ne which in turn contributes a large multiple of the
high-frequency information contained in vN to the reconstruction
solution.

• Thus, we can remove the high-frequency components that are
dominated by error.
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The Image Deblurring Problem

Deblurring using a general linear model.

• The naive reconstruction with SVD:

xnaive =

N∑
i=1

u⊤
i b

σi
vi (17)

• The truncated expansion with k < N, k ∈ N+:

xk =

k∑
i=1

u⊤
i b

σi
vi (18)

which is indeed a reduced-rank linear model.

• We may wonder if a different value for k will produce a better
reconstruction!
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Structured Matrix Computations

• A general linear model:
b = Ax+ e (19)

with 
b = vec(B) ∈ RN (blurred image)

x = vec(X) ∈ RN (sharp image)

e = vec(E) ∈ RN (noise image)

A ∈ RN×N (blurring matrix)

• The deblurring algorithms use certain orthogonal or unitary
decompositions of A.

◦ SVD: A = UΣV ⊤ vs. spectral decomposition2: A = ŨΛŨ
H

◦ If A has real entries, then the elements in the matrices of the SVD
will be real, but the entries in the spectral decomposition may be
complex.

2A matrix is unitary if Ũ
H
Ũ = ŨŨ

H
= I where Ũ

H
= conj(Ũ)⊤ is the

complex conjugate transpose of Ũ . Λ is a diagonal matrix containing the
eigenvalues of A.
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Structured Matrix Computations

Basic structures.

• Convolution is a mathematical operation.

• If p(s) and x(s) are continuous functions, then the convolution of
p(s) and x(s) is a function b(s) having the form

b(s) =

∫ ∞

−∞
p(s− t)x(t)dt (20)

each values of b(s) is essentially a weighted average of the values of
x(s), where the weights are given by p(s).

• The discrete version of convolution is a summation over a finite
number of terms.
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Structured Matrix Computations

Basic structures3.

•

3Lecture 14: Structured matrices, FFT, convolutions, Toeplitz matrices
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