Deblurring Images

Matrices, Spectra, and Filtering

Xinyu Chen

(https://xinychen.github.io)
October 11, 2022

Deblurring Images
 Matrices, Spectra, and Filtering

- Chapter 1: The Image Deblurring Problem
- Chapter 4: Structured Matrix Computations

The Image Deblurring Problem

About the image deblurring ${ }^{1}$:

- [Significance] Image deblurring is fundamental in making pictures sharp and useful.
- [General idea] Recovering the original and sharp image by using a mathematical model of blurring process.
- [Fact] No hope to recover the original image exactly!
- [Technical goal] Develop efficient and reliable algorithms for recovering as much information as possible from the given data.
- [Representation] A digital image is a two- or three-dimensional array of numbers representing intensities on a grayscale or color scale.

[^0]
The Image Deblurring Problem

A blurred picture and simple linear model.

- Sharp image vs. blurred image

- Notation: $\boldsymbol{X} \in \mathbb{R}^{m \times n}$ (desired sharp image) vs. $\boldsymbol{B} \in \mathbb{R}^{m \times n}$ (recorded blurred image)
- A simple linear model:
- Suppose the blurring of the columns in the image is independent of the blurring of the rows.
- Bilinear relationship: $\boldsymbol{A}_{c} \boldsymbol{X} \boldsymbol{A}_{r}^{\top}=\boldsymbol{B}$

The Image Deblurring Problem

A first attempt at deblurring.

- Recall that the simple linear model:

$$
\begin{equation*}
\boldsymbol{A}_{c} \boldsymbol{X} \boldsymbol{A}_{r}^{\top}=\boldsymbol{B} \quad \Longrightarrow \quad \boldsymbol{X}_{\text {naive }}=\boldsymbol{A}_{c}^{-1} \boldsymbol{B}\left(\boldsymbol{A}_{r}^{\top}\right)^{-1} \tag{1}
\end{equation*}
$$

ignores several types of errors.

- Let

$$
\begin{equation*}
\boldsymbol{B}_{\text {exact }}=\boldsymbol{A}_{c} \boldsymbol{X} \boldsymbol{A}_{r}^{\top} \tag{2}
\end{equation*}
$$

be the ideal (noise-free) blurred image, ignoring all kinds of errors.

- Consider small random errors (noise) in the recorded blurred image:

$$
\begin{equation*}
\boldsymbol{B}=\boldsymbol{B}_{\text {exact }}+\boldsymbol{E}=\boldsymbol{A}_{c} \boldsymbol{X} \boldsymbol{A}_{r}^{\top}+\boldsymbol{E} \tag{3}
\end{equation*}
$$

where $\boldsymbol{E} \in \mathbb{R}^{m \times n}$ is the noise image.

The Image Deblurring Problem

A first attempt at deblurring.

The naive reconstruction

Recall that

$$
\left\{\begin{array}{l}
\boldsymbol{X}_{\text {naive }}=\boldsymbol{A}_{c}^{-1} \boldsymbol{B}\left(\boldsymbol{A}_{r}^{\top}\right)^{-1} \tag{4}\\
\boldsymbol{B}=\boldsymbol{B}_{\text {exact }}+\boldsymbol{E}=\boldsymbol{A}_{c} \boldsymbol{X} \boldsymbol{A}_{r}^{\top}+\boldsymbol{E}
\end{array}\right.
$$

we therefore have the naive reconstruction:

$$
\begin{align*}
\boldsymbol{X}_{\text {naive }} & =\boldsymbol{A}_{c}^{-1} \boldsymbol{B}\left(\boldsymbol{A}_{r}^{\top}\right)^{-1} \\
& =\boldsymbol{A}_{c}^{-1} \boldsymbol{B}_{\text {exact }}\left(\boldsymbol{A}_{r}^{\top}\right)^{-1}+\boldsymbol{A}_{c}^{-1} \boldsymbol{E}\left(\boldsymbol{A}_{r}^{\top}\right)^{-1} \tag{5}\\
& =\boldsymbol{X}+\boldsymbol{A}_{c}^{-1} \boldsymbol{E}\left(\boldsymbol{A}_{r}^{\top}\right)^{-1}
\end{align*}
$$

- The blurred image consists of two components: the first component is the exact image, and the second component is the inverted noise.

The Image Deblurring Problem

A first attempt at deblurring.

- A simple test: Exact image $\boldsymbol{X} \in \mathbb{R}^{m \times n}$ vs. blurred image $\boldsymbol{B} \in \mathbb{R}^{m \times n}$

The Image Deblurring Problem

Lemma

For the simple model $\boldsymbol{B}=\boldsymbol{A}_{c} \boldsymbol{X} \boldsymbol{A}_{r}^{\top}+\boldsymbol{E}$, the relative error in the naive reconstruction $\boldsymbol{X}_{\text {naive }}=\boldsymbol{A}_{c}^{-1} \boldsymbol{B}\left(\boldsymbol{A}_{r}^{\dagger}\right)^{-1}$ satisfies

$$
\begin{equation*}
\frac{\left\|\boldsymbol{X}_{\text {naive }}-\boldsymbol{X}\right\|_{F}}{\|\boldsymbol{X}\|_{F}} \leq \operatorname{cond}\left(\boldsymbol{A}_{c}\right) \cdot \operatorname{cond}\left(\boldsymbol{A}_{r}\right) \cdot \frac{\|\boldsymbol{E}\|_{F}}{\|\boldsymbol{B}\|_{F}} \tag{6}
\end{equation*}
$$

where $\|\cdot\|_{F}$ denotes the Frobenius norm ${ }^{a}$, and cond (\cdot) denotes the conditional number ${ }^{\text {b }}$.
${ }^{\mathrm{a}}$ For any $\boldsymbol{X} \in \mathbb{R}^{m \times n}$, we have $\|\boldsymbol{X}\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} x_{i j}^{2}}$.
${ }^{b}$ For any $\boldsymbol{A} \in \mathbb{R}^{N \times N}$ whose singular values are strictly positive, namely, $\sigma_{1} \geq \cdots \geq \sigma_{N}>0$, we have cond $(\boldsymbol{A})=\sigma_{1} / \sigma_{N}$.

The Image Deblurring Problem

Deblurring using a general linear model.

- In most situations, the blur is indeed linear, or at least well approximated by a linear model.
- A general linear model via vectorization.
- Given sharp image $\boldsymbol{X} \in \mathbb{R}^{m \times n}$ and blurred image $\boldsymbol{B} \in \mathbb{R}^{m \times n}$, since the blurring is assumed to be a linear operation, there must exist a large blurring matrix $\boldsymbol{A} \in \mathbb{R}^{N \times N}(N=m n)$ such that

$$
\begin{equation*}
A x=b \tag{7}
\end{equation*}
$$

with

$$
\boldsymbol{x}=\operatorname{vec}(\boldsymbol{X})=\left[\begin{array}{c}
\boldsymbol{x}_{1} \tag{8}\\
\vdots \\
\boldsymbol{x}_{n}
\end{array}\right] \in \mathbb{R}^{N}, \quad \boldsymbol{b}=\operatorname{vec}(\boldsymbol{B})=\left[\begin{array}{c}
\boldsymbol{b}_{1} \\
\vdots \\
\boldsymbol{b}_{n}
\end{array}\right] \in \mathbb{R}^{N}
$$

- The naive approach to image deblurring is simply to solve this linear algebraic system.

The Image Deblurring Problem

Deblurring using a general linear model.
The naive reconstruction (matrix-form)
Recall that

$$
\left\{\begin{array}{l}
\boldsymbol{X}_{\text {naive }}=\boldsymbol{A}_{c}^{-1} \boldsymbol{B}\left(\boldsymbol{A}_{r}^{\top}\right)^{-1} \tag{9}\\
\boldsymbol{B}=\boldsymbol{B}_{\text {exact }}+\boldsymbol{E}=\boldsymbol{A}_{c} \boldsymbol{X} \boldsymbol{A}_{r}^{\top}+\boldsymbol{E}
\end{array}\right.
$$

we therefore have the naive reconstruction:

$$
\begin{align*}
\boldsymbol{X}_{\text {naive }} & =\boldsymbol{A}_{c}^{-1} \boldsymbol{B}\left(\boldsymbol{A}_{r}^{\top}\right)^{-1} \\
& =\boldsymbol{A}_{c}^{-1} \boldsymbol{B}_{\text {exact }}\left(\boldsymbol{A}_{r}^{\top}\right)^{-1}+\boldsymbol{A}_{c}^{-1} \boldsymbol{E}\left(\boldsymbol{A}_{r}^{\top}\right)^{-1} \tag{10}\\
& =\boldsymbol{X}+\boldsymbol{A}_{c}^{-1} \boldsymbol{E}\left(\boldsymbol{A}_{r}^{\top}\right)^{-1}
\end{align*}
$$

The naive reconstruction (vector-form)
Vectorize blurred image \boldsymbol{B} and noise image \boldsymbol{E} as $\boldsymbol{b}_{\text {exact }}=\operatorname{vec}\left(\boldsymbol{B}_{\text {exact }}\right)=\boldsymbol{A} \boldsymbol{x}$ and $\boldsymbol{e}=\operatorname{vec}(\boldsymbol{E})$, respectively, then we have

$$
\begin{equation*}
\boldsymbol{x}_{\text {naive }}=\boldsymbol{A}^{-1} \boldsymbol{b}=\boldsymbol{A}^{-1} \boldsymbol{b}_{\text {exact }}+\boldsymbol{A}^{-1} \boldsymbol{e}=\boldsymbol{x}+\boldsymbol{A}^{-1} \boldsymbol{e} \tag{11}
\end{equation*}
$$

The Image Deblurring Problem

Deblurring using a general linear model.

- Relationship between matrix- and vector-form reconstruction:

$$
\begin{align*}
\boldsymbol{X}_{\text {naive }} & =\boldsymbol{A}_{c}^{-1} \boldsymbol{B}\left(\boldsymbol{A}_{r}^{\top}\right)^{-1} \\
\Longrightarrow \boldsymbol{x}_{\text {naive }} & =\left(\boldsymbol{A}_{r}^{-1} \otimes \boldsymbol{A}_{c}^{-1}\right) \boldsymbol{b} \tag{12}\\
& =\left(\boldsymbol{A}_{r} \otimes \boldsymbol{A}_{c}\right)^{-1} \boldsymbol{b}
\end{align*}
$$

it therefore demonstrates that $\boldsymbol{A} \triangleq \boldsymbol{A}_{r} \otimes \boldsymbol{A}_{c}$.

- Property of Kronecker product \otimes :

Proposition

Let $\boldsymbol{A} \in \mathbb{R}^{m \times m}, \boldsymbol{X} \in \mathbb{R}^{m \times n}$, and $\boldsymbol{B} \in \mathbb{R}^{n \times n}$ be three matrices commensurate from multiplication in that order, then it holds that

$$
\begin{equation*}
\operatorname{vec}(\boldsymbol{A} \boldsymbol{X} \boldsymbol{B})=\left(\boldsymbol{B}^{\top} \otimes \boldsymbol{A}\right) \operatorname{vec}(\boldsymbol{X}) \tag{13}
\end{equation*}
$$

The Image Deblurring Problem

Deblurring using a general linear model.

Singular value decomposition (SVD)

For any $\boldsymbol{A} \in \mathbb{R}^{N \times N}$ whose singular values are strictly positive, we have

$$
\begin{equation*}
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}=\sum_{i=1}^{N} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{\top} \quad \Longrightarrow \quad \boldsymbol{A}^{-1}=\sum_{i=1}^{N} \frac{1}{\sigma_{i}} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{\top} \tag{14}
\end{equation*}
$$

The naive reconstruction with SVD
The naive reconstruction can be written as follows,

$$
\begin{equation*}
\boldsymbol{x}_{\text {naive }}=\boldsymbol{A}^{-1} \boldsymbol{b}=\boldsymbol{V} \boldsymbol{\Sigma}^{-1} \boldsymbol{U}^{\top} \boldsymbol{b}=\sum_{i=1}^{N} \frac{\boldsymbol{u}_{i}^{\top} \boldsymbol{b}}{\sigma_{i}} \boldsymbol{v}_{i} \tag{15}
\end{equation*}
$$

in which the inverted noise is

$$
\begin{equation*}
\boldsymbol{A}^{-1} \boldsymbol{e}=\boldsymbol{V} \boldsymbol{\Sigma}^{-1} \boldsymbol{U}^{\top} \boldsymbol{e}=\sum_{i=1}^{N} \frac{\boldsymbol{u}_{i}^{\top} \boldsymbol{e}}{\sigma_{i}} \boldsymbol{v}_{i} \tag{16}
\end{equation*}
$$

The Image Deblurring Problem

Deblurring using a general linear model.

- Recall that the inverted noise is

$$
\boldsymbol{A}^{-1} \boldsymbol{e}=\boldsymbol{V} \boldsymbol{\Sigma}^{-1} \boldsymbol{U}^{\top} \boldsymbol{e}=\sum_{i=1}^{N} \frac{\boldsymbol{u}_{i}^{\top} \boldsymbol{e}}{\sigma_{i}} \boldsymbol{v}_{i}
$$

- Properties for image deblurring problems:
- The error components $\left|\boldsymbol{u}_{i}^{\top} \boldsymbol{e}\right|$ are small and typically of roughly the same order of magnitude for all i.
- The singular values decay to a value very close to zero. As a consequence, the condition number cond $(\boldsymbol{A})=\sigma_{1} / \sigma_{N}$ is very large, indicating that the solution is very sensitive to perturbation and rounding errors.
- The singular vectors corresponding to the smaller singular values typically represent high-frequency information. That is, as i increases, the vectors \boldsymbol{u}_{i} and \boldsymbol{v}_{i} tend to have more sign changes.

The Image Deblurring Problem

Deblurring using a general linear model.

- Recall that the inverted noise is

$$
\boldsymbol{A}^{-1} \boldsymbol{e}=\boldsymbol{V} \boldsymbol{\Sigma}^{-1} \boldsymbol{U}^{\top} \boldsymbol{e}=\sum_{i=1}^{N} \frac{\boldsymbol{u}_{i}^{\top} \boldsymbol{e}}{\sigma_{i}} \boldsymbol{v}_{i}
$$

Remark

For $\boldsymbol{A}^{-1} \boldsymbol{e}$, the quantities $\boldsymbol{u}_{i}^{\top} \boldsymbol{e} / \sigma_{i}$ are the expansion coefficients for the basis vectors \boldsymbol{v}_{i}. When these quantities are small in magnitude, the solution has very little contribution from \boldsymbol{v}_{i}, but when we divide by a small singular values such as σ_{N}, we greatly magnify the corresponding error component $\boldsymbol{u}_{N}^{\top} \boldsymbol{e}$ which in turn contributes a large multiple of the high-frequency information contained in \boldsymbol{v}_{N} to the reconstruction solution.

- Thus, we can remove the high-frequency components that are dominated by error.

The Image Deblurring Problem

Deblurring using a general linear model.

- The naive reconstruction with SVD:

$$
\begin{equation*}
\boldsymbol{x}_{\text {naive }}=\sum_{i=1}^{N} \frac{\boldsymbol{u}_{i}^{\top} \boldsymbol{b}}{\sigma_{i}} \boldsymbol{v}_{i} \tag{17}
\end{equation*}
$$

- The truncated expansion with $k<N, k \in \mathbb{N}^{+}$:

$$
\begin{equation*}
\boldsymbol{x}_{k}=\sum_{i=1}^{k} \frac{\boldsymbol{u}_{i}^{\top} \boldsymbol{b}}{\sigma_{i}} \boldsymbol{v}_{i} \tag{18}
\end{equation*}
$$

which is indeed a reduced-rank linear model.

- We may wonder if a different value for k will produce a better reconstruction!

Structured Matrix Computations

- A general linear model:

$$
\begin{equation*}
b=A x+e \tag{19}
\end{equation*}
$$

with

$$
\begin{cases}\boldsymbol{b}=\operatorname{vec}(\boldsymbol{B}) \in \mathbb{R}^{N} & \text { (blurred image) } \\ \boldsymbol{x}=\operatorname{vec}(\boldsymbol{X}) \in \mathbb{R}^{N} & \text { (sharp image) } \\ \boldsymbol{e}=\operatorname{vec}(\boldsymbol{E}) \in \mathbb{R}^{N} & \text { (noise image) } \\ \boldsymbol{A} \in \mathbb{R}^{N \times N} & \text { (blurring matrix) }\end{cases}
$$

- The deblurring algorithms use certain orthogonal or unitary decompositions of \boldsymbol{A}.
- SVD: $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}$ vs. spectral decomposition ${ }^{2}: \boldsymbol{A}=\tilde{\boldsymbol{U}} \boldsymbol{\Lambda} \tilde{\boldsymbol{U}}^{H}$
- If \boldsymbol{A} has real entries, then the elements in the matrices of the SVD will be real, but the entries in the spectral decomposition may be complex.
${ }^{2}$ A matrix is unitary if $\tilde{\boldsymbol{U}}^{H} \tilde{\boldsymbol{U}}=\tilde{\boldsymbol{U}} \tilde{\boldsymbol{U}}^{H}=\boldsymbol{I}$ where $\tilde{\boldsymbol{U}}^{H}=\operatorname{conj}(\tilde{\boldsymbol{U}})^{\top}$ is the complex conjugate transpose of $\tilde{\boldsymbol{U}}$. $\boldsymbol{\Lambda}$ is a diagonal matrix containing the eigenvalues of \boldsymbol{A}.

Structured Matrix Computations

Basic structures.

- Convolution is a mathematical operation.
- If $p(s)$ and $x(s)$ are continuous functions, then the convolution of $p(s)$ and $x(s)$ is a function $b(s)$ having the form

$$
\begin{equation*}
b(s)=\int_{-\infty}^{\infty} p(s-t) x(t) d t \tag{20}
\end{equation*}
$$

each values of $b(s)$ is essentially a weighted average of the values of $x(s)$, where the weights are given by $p(s)$.

- The discrete version of convolution is a summation over a finite number of terms.

Structured Matrix Computations

Basic structures ${ }^{3}$.

[^1]
[^0]: ${ }^{1}$ The images and Matlab functions discussed in the book are available at https://archive.siam.org/books/fa03/.

[^1]: ${ }^{3}$ Lecture 14: Structured matrices, FFT, convolutions, Toeplitz matrices

