

# POLYTECHNIQUE Montréal

UNIVERSITÉ D'INGÉNIERIE



# Laplacian Convolutional Representation for Traffic Time Series Imputation

Xinyu Chen

Postdoctoral Associate, MIT

Ph.D., University of Montreal

July 11, 2024









Xinyu Chen PolyMtl  $\rightarrow$  MIT

Zhanhong Cheng McGill



HanQin Cai UCF





Nicolas Saunier PolyMtl

Lijun Sun McGill

#### **Publication:**

 X. Chen, Z. Cheng, H.Q. Cai, N. Saunier, L. Sun (2024). Laplacian convolutional representation for traffic time series imputation. IEEE Transactions on Knowledge and Data Engineering. 36 (11): 6490 - 6502. https://doi.org/10.1109/TKDE.2024.3419698

#### **Open source:**

• Spatiotemporal data modeling initiative: https://spatiotemporal-data.github.io

# Outline

#### Motivation

Data-Driven ITS Time Series Imputation Speed Field Reconstruction Marginal Idea Works

#### Preliminaries

Revisit Laplacian Matrix Revisit Circular Convolution Reformulate Laplacian regularization

#### Global Trend Modeling

#### • Laplacian Convolutional Representation

Model Description Solution Algorithm Empirical Time Complexity

#### Experiments

Traffic Volume & Speed Imputation Speed Field Reconstruction

#### Conclusion

• Portland highway traffic flow data<sup>1</sup>





Highway network & N sensors





Highway network & N sensors





<sup>&</sup>lt;sup>1</sup>https://portal.its.pdx.edu/home



- How to utilize the global trends of traffic time series?
- How to produce local consistency of traffic data?



- How to learn from sparse spatiotemporal data?
- How to characterize spatial/temporal local dependencies?

#### Sparse time series imputation

• Global trends (e.g., long-term quasi-seasonality & daily/weekly rhythm)



• Local trends (e.g., short-term time series trends)



Modeling global & local trends simultaneously?

# **Revisit Laplacian Matrix**



 $L = \underbrace{D}$ \_

degree matrix adjacency matrix



https://udlbook.github.io/udlbook/

| Labelled graph | Degree matrix |   |   |          |   |   | Adjacency matrix |       |   |   |   |   |    | Laplacian matrix |                |         |         |         |         |    |
|----------------|---------------|---|---|----------|---|---|------------------|-------|---|---|---|---|----|------------------|----------------|---------|---------|---------|---------|----|
| -              | 12            | 2 | 0 | 0        | 0 | 0 | 0)               | (0    | 1 | 0 | 0 | 1 | 0) |                  | $\binom{2}{2}$ | $^{-1}$ | 0       | 0       | $^{-1}$ | 0) |
| $\binom{6}{2}$ |               | ) | 3 | 0        | 0 | 0 | 0                | 1     | 0 | 1 | 0 | 1 | 0  |                  | $^{-1}$        | 3       | $^{-1}$ | 0       | $^{-1}$ | 0  |
| (4)-(5)-(1)    |               | ) | 0 | <b>2</b> | 0 | 0 | 0                | 0     | 1 | 0 | 1 | 0 | 0  |                  | 0              | $^{-1}$ | $^{2}$  | $^{-1}$ | 0       | 0  |
| I LO           |               | ) | 0 | 0        | 3 | 0 | 0                | 0     | 0 | 1 | 0 | 1 | 1  |                  | 0              | 0       | $^{-1}$ | 3       | $^{-1}$ | -1 |
| (3)-(2)        |               | ) | 0 | 0        | 0 | 3 | 0                | 1     | 1 | 0 | 1 | 0 | 0  |                  | -1             | $^{-1}$ | 0       | $^{-1}$ | 3       | 0  |
| •              | 1             | ) | 0 | 0        | 0 | 0 | 1/               | 0 / 1 | 0 | 0 | 1 | 0 | 0/ | '                | ( 0            | 0       | 0       | $^{-1}$ | 0       | 1/ |

— "Laplacian matrix" on Wikipedia

• Intuition of Laplacian matrix.



• Intuition of Laplacian matrix.



Reformulate Laplacian regularization with circular convolution.

• Intuition of (circulant) Laplacian matrix.



Undirected and circulant graph

 $\boldsymbol{L} = \begin{bmatrix} 2 & -1 & 0 & 0 & -1 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ -1 & 0 & 0 & -1 & 2 \end{bmatrix}$ 

(Circulant) Laplacian matrix

• Laplacian kernel:  $\boldsymbol{\ell} = (2, -1, 0, 0, -1)^{\top}$ .

$$\boldsymbol{L}\boldsymbol{x} = \begin{bmatrix} 2 & -1 & 0 & 0 & -1 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ -1 & 0 & 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 0 \\ 0 \\ -1 \end{bmatrix} \star \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \boldsymbol{\ell} \star \boldsymbol{x}$$

where  $\star$  denotes the ciruclar convolution.

• Local trend modeling via (Laplacian) temporal regularization:

$$\mathcal{R}(\boldsymbol{x}) = \frac{1}{2} \|\boldsymbol{L}\boldsymbol{x}\|_{2}^{2} = \frac{1}{2} \|\boldsymbol{\ell} \star \boldsymbol{x}\|_{2}^{2}$$

"... The circulant graph has an adjacency matrix that is a circulant matrix."

- "Circulant graph" on Wikipedia

• Define Laplacian kernel:

$$\boldsymbol{\ell} \triangleq (\underbrace{2\tau}_{\text{degree}}, \underbrace{-1, \cdots, -1}_{\tau}, 0, \cdots, 0, \underbrace{-1, \cdots, -1}_{\tau})^{\top} \in \mathbb{R}^{T}$$

for any time series  $\boldsymbol{x} = (x_1, \dots, x_T)^\top \in \mathbb{R}^T$ .

 $<sup>^{2}</sup>$ It refers to the Convolution theorem.

• Define Laplacian kernel:

$$\boldsymbol{\ell} \triangleq (\underbrace{2\tau}_{\text{degree}}, \underbrace{-1, \cdots, -1}_{\tau}, 0, \cdots, 0, \underbrace{-1, \cdots, -1}_{\tau})^{\top} \in \mathbb{R}^{T}$$

for any time series  $\boldsymbol{x} = (x_1, \dots, x_T)^\top \in \mathbb{R}^T$ .

• Local trend modeling via (Laplacian) temporal regularization:

$$\mathcal{R}_{\tau}(\boldsymbol{x}) = \frac{1}{2} \|\boldsymbol{L}\boldsymbol{x}\|_{2}^{2} = \frac{1}{2} \|\boldsymbol{\ell} \star \boldsymbol{x}\|_{2}^{2}$$

• Property with discrete Fourier transform (denoted by  $\mathcal{F}(\cdot))^2$ :

$$\mathcal{R}_{\tau}(\boldsymbol{x}) = \frac{1}{2} \|\boldsymbol{\ell} \star \boldsymbol{x}\|_{2}^{2} = \underbrace{\frac{1}{2T} \|\mathcal{F}(\boldsymbol{\ell}) \circ \mathcal{F}(\boldsymbol{x})\|_{2}^{2}}_{\text{w/ FFT in } \mathcal{O}(T \log T) \text{ time}}$$

<sup>&</sup>lt;sup>2</sup>It refers to the Convolution theorem.

# **Global Trend Modeling**

Circulant matrix  $\mathcal{C}(\boldsymbol{x})$  vs. convolution matrix  $\mathcal{C}_{\tilde{\tau}}(\boldsymbol{x})$ 



# **Global Trend Modeling**

Circulant matrix  $\mathcal{C}(\boldsymbol{x})$  vs. convolution matrix  $\mathcal{C}_{\tilde{\tau}}(\boldsymbol{x})$ 



- Circulant/Convolution nuclear norm minimization (w/  $\|C(x)\|_* = \|\mathcal{F}(x)\|_1$ )
  - A balance between global and local trends modeling?

| CircNNM (Liu'22, Liu & Zhang'23)                                           | ConvNNM (Liu'22                                                            |  |  |  |  |  |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|--|--|
| Estimating $\boldsymbol{x}$ :                                              | Estimating $x$ :                                                           |  |  |  |  |  |
| $\min_{\boldsymbol{x}} \ \mathcal{C}(\boldsymbol{x})\ _{*}$                | $\min_{\boldsymbol{x}} \ \  \mathcal{C}_{\widetilde{\tau}}(\boldsymbol{x}$ |  |  |  |  |  |
| s.t. $\ \mathcal{P}_{\Omega}(oldsymbol{x}-oldsymbol{y})\ _2 \leq \epsilon$ | s.t. $\ \mathcal{P}_{\Omega}(\mathbf{a})\ $                                |  |  |  |  |  |
| on data ${m y}$ w/ observed index set $\Omega.$                            | on data $oldsymbol{y}$ w/ obse                                             |  |  |  |  |  |

ConvNNM (Liu'22, Liu & Zhang'23) Estimating  $\boldsymbol{x}$ :  $\min_{\boldsymbol{x}} \|\mathcal{C}_{\tilde{\tau}}(\boldsymbol{x})\|_{*}$ s.t.  $\|\mathcal{P}_{\Omega}(\boldsymbol{x} - \boldsymbol{y})\|_{2} \leq \epsilon$ on data  $\boldsymbol{y}$  w/ observed index set  $\Omega$ .

#### Laplacian Convolutional Representation (LCR)

For any partially observed time series  $\boldsymbol{y} \in \mathbb{R}^T$  with observed index set  $\Omega$ , LCR utilizes circulant matrix and Laplacian kernel to characterize global and local trends in time series, respectively, i.e.,

$$\min_{\boldsymbol{x}} \quad \underbrace{\|\mathcal{C}(\boldsymbol{x})\|_{*}}_{\text{global}} + \frac{\gamma}{2} \underbrace{\|\boldsymbol{\ell} \star \boldsymbol{x}\|_{2}^{2}}_{\text{local}}$$
s.t.  $\|\mathcal{P}_{\Omega}(\boldsymbol{x} - \boldsymbol{y})\|_{2} \le \epsilon$ 



• LCR model:

$$\begin{array}{l} \underset{\boldsymbol{x}}{\min} \quad \|\mathcal{C}(\boldsymbol{x})\|_{*} + \frac{\gamma}{2} \|\boldsymbol{\ell} \star \boldsymbol{x}\|_{2}^{2} \\ \text{s.t.} \quad \|\mathcal{P}_{\Omega}(\boldsymbol{x} - \boldsymbol{y})\|_{2} \leq \epsilon \\ \\ \end{array} \\ \Longrightarrow \quad \underbrace{\underset{\boldsymbol{x}}{\min} \quad \underbrace{\|\mathcal{C}(\boldsymbol{x})\|_{*} + \frac{\gamma}{2} \|\boldsymbol{\ell} \star \boldsymbol{x}\|_{2}^{2}}_{\text{global + local modeling}} + \underbrace{\frac{\eta}{2} \|\mathcal{P}_{\Omega}(\boldsymbol{z} - \boldsymbol{y})\|_{2}^{2}}_{\text{constraint to regularization}} \\ \text{s.t.} \quad \boldsymbol{z} = \boldsymbol{x} \end{array}$$

LCR model: 
$$\begin{split}
& \min_{\boldsymbol{x}} \|\mathcal{C}(\boldsymbol{x})\|_{*} + \frac{\gamma}{2} \|\boldsymbol{\ell} \star \boldsymbol{x}\|_{2}^{2} \\
& \text{s.t.} \|\mathcal{P}_{\Omega}(\boldsymbol{x} - \boldsymbol{y})\|_{2} \leq \epsilon \\
& \implies & \min_{\boldsymbol{x}} \underbrace{\|\mathcal{C}(\boldsymbol{x})\|_{*} + \frac{\gamma}{2} \|\boldsymbol{\ell} \star \boldsymbol{x}\|_{2}^{2}}_{\text{global + local modeling}} + \underbrace{\frac{\eta}{2} \|\mathcal{P}_{\Omega}(\boldsymbol{z} - \boldsymbol{y})\|_{2}^{2}}_{\text{constraint to regularization}} \\
& \text{s.t. } \boldsymbol{z} = \boldsymbol{x}
\end{split}$$

.

"The alternating direction method of multipliers (ADMM) is an algorithm that solves convex optimization problems by breaking them into smaller pieces, each of which are then easier to handle."

- Source: https://stanford.edu/~boyd/admm.html

## Laplacian Convolutional Representation

• LCR model:

$$\begin{split} \min_{\boldsymbol{x}} & \|\mathcal{C}(\boldsymbol{x})\|_{*} + \frac{\gamma}{2} \|\boldsymbol{\ell} \star \boldsymbol{x}\|_{2}^{2} + \frac{\eta}{2} \|\mathcal{P}_{\Omega}(\boldsymbol{x} - \boldsymbol{y})\|_{2}^{2} \\ \text{s.t. } & \boldsymbol{z} = \boldsymbol{x} \end{split}$$

• Augmented Lagrangian function<sup>3</sup>:

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{w}) = \|\mathcal{C}(\boldsymbol{x})\|_* + \frac{\gamma}{2} \|\boldsymbol{\ell} \star \boldsymbol{x}\|_2^2 + \frac{\lambda}{2} \|\boldsymbol{x} - \boldsymbol{z}\|_2^2 + \langle \boldsymbol{w}, \boldsymbol{x} - \boldsymbol{z} \rangle + \frac{\eta}{2} \|\mathcal{P}_{\Omega}(\boldsymbol{z} - \boldsymbol{y})\|_2^2$$

 $\overline{\ }^3$ w/ Lagrange multiplier  $m{w} \in \mathbb{R}^T$  and inner product  $\langle m{x}, m{y} 
angle = m{x}^ op m{y}.$ 

## Laplacian Convolutional Representation

• LCR model:

$$\begin{split} \min_{\boldsymbol{x}} & \|\mathcal{C}(\boldsymbol{x})\|_{*} + \frac{\gamma}{2} \|\boldsymbol{\ell} \star \boldsymbol{x}\|_{2}^{2} + \frac{\eta}{2} \|\mathcal{P}_{\Omega}(\boldsymbol{x} - \boldsymbol{y})\|_{2}^{2} \\ \text{s.t. } & \boldsymbol{z} = \boldsymbol{x} \end{split}$$

• Augmented Lagrangian function<sup>3</sup>:

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{w}) = \|\mathcal{C}(\boldsymbol{x})\|_* + \frac{\gamma}{2} \|\boldsymbol{\ell} \star \boldsymbol{x}\|_2^2 + \frac{\lambda}{2} \|\boldsymbol{x} - \boldsymbol{z}\|_2^2 + \langle \boldsymbol{w}, \boldsymbol{x} - \boldsymbol{z} \rangle + \frac{\eta}{2} \|\mathcal{P}_{\Omega}(\boldsymbol{z} - \boldsymbol{y})\|_2^2$$

• The ADMM scheme:

$$\begin{cases} \boldsymbol{x} := \arg\min_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{w}) & (\text{Nuclear norm minimization}) \\ \boldsymbol{z} := \arg\min_{\boldsymbol{z}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{w}) & (\text{Closed-form solution}) \\ = \frac{1}{\lambda + \eta} \mathcal{P}_{\Omega}(\lambda \boldsymbol{x} + \boldsymbol{w} + \eta \boldsymbol{y}) + \frac{1}{\lambda} \mathcal{P}_{\Omega}^{\perp}(\lambda \boldsymbol{x} + \boldsymbol{w}) \\ \boldsymbol{\omega} := \boldsymbol{w} + \lambda(\boldsymbol{x} - \boldsymbol{z}) & (\text{Standard update}) \end{cases}$$

• Optimize x?

$$\underbrace{\|\mathcal{C}(\boldsymbol{x})\|_{*} = \|\mathcal{F}(\boldsymbol{x})\|_{1}}_{\text{property of circulant matrix}} \& \underbrace{\frac{1}{2} \|\boldsymbol{\ell} \star \boldsymbol{x}\|_{2}^{2} = \frac{1}{2T} \|\mathcal{F}(\boldsymbol{\ell}) \circ \mathcal{F}(\boldsymbol{x})\|_{2}^{2}}_{\text{property of circular convolution}}$$

<sup>3</sup>w/ Lagrange multiplier 
$$m{w} \in \mathbb{R}^T$$
 and inner product  $\langle m{x}, m{y} 
angle = m{x}^ op m{y}.$ 

• Optimize  $\boldsymbol{x}$  via FFT (in  $\mathcal{O}(T \log T)$  time):

$$\begin{split} \boldsymbol{x} &:= \arg\min_{\boldsymbol{x}} \ \|\mathcal{C}(\boldsymbol{x})\|_{*} + \frac{\gamma}{2} \|\boldsymbol{\ell} \star \boldsymbol{x}\|_{2}^{2} + \frac{\lambda}{2} \|\boldsymbol{x} - \boldsymbol{z} + \boldsymbol{w}/\lambda\|_{2}^{2} \\ \Longrightarrow \hat{\boldsymbol{x}} &:= \arg\min_{\hat{\boldsymbol{x}}} \ \|\hat{\boldsymbol{x}}\|_{1} + \frac{\gamma}{2T} \|\hat{\boldsymbol{\ell}} \circ \hat{\boldsymbol{x}}\|_{2}^{2} + \frac{\lambda}{2T} \|\hat{\boldsymbol{x}} - \hat{\boldsymbol{z}} + \hat{\boldsymbol{w}}/\lambda\|_{2}^{2} \end{split}$$

where we introduce  $\{\hat{\ell}, \hat{x}, \hat{z}, \hat{w}\} \triangleq \mathcal{F}\{\ell, x, z, w\}$  (i.e., FFT).

• Optimize  $\boldsymbol{x}$  via FFT (in  $\mathcal{O}(T \log T)$  time):

$$\begin{split} \boldsymbol{x} &:= \arg\min_{\boldsymbol{x}} \ \|\mathcal{C}(\boldsymbol{x})\|_{*} + \frac{\gamma}{2} \|\boldsymbol{\ell} \star \boldsymbol{x}\|_{2}^{2} + \frac{\lambda}{2} \|\boldsymbol{x} - \boldsymbol{z} + \boldsymbol{w}/\lambda\|_{2}^{2} \\ \Longrightarrow \hat{\boldsymbol{x}} &:= \arg\min_{\hat{\boldsymbol{x}}} \ \|\hat{\boldsymbol{x}}\|_{1} + \frac{\gamma}{2T} \|\hat{\boldsymbol{\ell}} \circ \hat{\boldsymbol{x}}\|_{2}^{2} + \frac{\lambda}{2T} \|\hat{\boldsymbol{x}} - \hat{\boldsymbol{z}} + \hat{\boldsymbol{w}}/\lambda\|_{2}^{2} \end{split}$$

where we introduce  $\{\hat{\ell}, \hat{x}, \hat{z}, \hat{w}\} \triangleq \mathcal{F}\{\ell, x, z, w\}$  (i.e., FFT).

#### $\ell_1$ -norm Minimization in Complex Space (Liu & Zhang'23)

For any optimization problem in the form of  $\ell_1$ -norm minimization in complex space:

$$\min_{\hat{\bm{x}}} \|\hat{\bm{x}}\|_1 + \frac{\delta}{2} \|\hat{\bm{x}} - \hat{\bm{h}}\|_2^2$$

with complex-valued  $\hat{x}, \hat{h} \in \mathbb{C}^T$  and weight parameter  $\delta$ , element-wise, the solution is given by

$$\hat{x}_t := \frac{h_t}{|\hat{h}_t|} \cdot \max\{0, |\hat{h}_t| - 1/\delta\}, t = 1, \dots, T.$$

#### Empirical time complexity

On the synthetic data  $\boldsymbol{y} \in \mathbb{R}^T$  with  $T \in \{2^{10}, 2^{11}, \dots, 2^{20}\}$ 

- Ours: LCR
  - An FFT implementation in  $\mathcal{O}(T \log T)$
  - $\circ~$  The logarithmic factor  $\log T$  makes the FFT highly efficient
- Baseline: ConvNNM (Liu'22, Liu & Zhang'23)
  - $\circ~$  Convolution matrix  $\mathcal{C}_{\tilde{\tau}}(\boldsymbol{y}) \in \mathbb{R}^{T \times \tilde{\tau}}$  with kernel size  $\tilde{\tau} = 2^4$
  - Singular value thresholding in  $\mathcal{O}( ilde{ au}^2 T)$





- How to utilize the global trends of traffic time series?
- How to produce local consistency of traffic data?

Plus local time series trends

• Substantial performance gains?



$$\begin{split} \text{CircNNM:} & \underset{\boldsymbol{x}}{\min} \ \|\mathcal{C}(\boldsymbol{x})\|_{*} \\ & \text{s.t.} \ \|\mathcal{P}_{\Omega}(\boldsymbol{x}-\boldsymbol{y})\|_{2} \leq \epsilon \end{split}$$



LCR:

$$\min_{\boldsymbol{x}} \|\mathcal{C}(\boldsymbol{x})\|_* + \frac{\gamma}{2} \|\boldsymbol{\ell} \star \boldsymbol{x}\|_2^2$$
  
s. t.  $\|\mathcal{P}_{\Omega}(\boldsymbol{x} - \boldsymbol{y})\|_2 \leq \epsilon$ 



• The start data points and end data points are connected?



• Flipping operation on  $\boldsymbol{x} \in \mathbb{R}^5$ :

$$\boldsymbol{x}_{\text{new}} = \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{J} \boldsymbol{x} \end{bmatrix} = (\underbrace{\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3, \boldsymbol{x}_4, \boldsymbol{x}_5}_{\text{original time series}}, \underbrace{\boldsymbol{x}_5, \boldsymbol{x}_4, \boldsymbol{x}_3, \boldsymbol{x}_2, \boldsymbol{x}_1}_{\text{flipped time series}})^\top \in \mathbb{R}^{10}$$

where  $\boldsymbol{J} \in \mathbb{R}^{5 imes 5}$  is the exchange matrix.

#### Speed field reconstruction<sup>4</sup>

• Flipping operation on a matrix:





Flip columns

<sup>&</sup>lt;sup>4</sup>Highway Drone (HighD) dataset at https://www.highd-dataset.com/

#### Speed field reconstruction<sup>4</sup>

• Flipping operation on a matrix:



• Flipping operation on a speed field of vehicular traffic flow:



<sup>4</sup>Highway Drone (HighD) dataset at https://www.highd-dataset.com/

#### Speed field reconstruction<sup>5</sup>

- Scenario: Mask trajectories of 70% vehicles
- LCR-2D on partially observed  $\boldsymbol{Y} \in \mathbb{R}^{N \times T}$ :





<sup>5</sup>Highway Drone (HighD) dataset at https://www.highd-dataset.com/

#### Contributions



# Vision & Insight



#### **Highlights:**

- Rethinking the importance of local trend modeling in traffic data imputation tasks.
- Finding a unified global and local trend modeling framework whose optimization can be efficiently solved by FFT:

$$\min_{\boldsymbol{x}} \quad \underbrace{\|\mathcal{C}(\boldsymbol{x})\|_{*}}_{\text{global}} + \frac{\gamma}{2} \underbrace{\|\boldsymbol{\ell} \star \boldsymbol{x}\|_{2}^{2}}_{\text{local}}$$
s. t.  $\|\mathcal{P}_{\Omega}(\boldsymbol{x} - \boldsymbol{y})\|_{2} \le \epsilon$ 

- (Starting point) How to impute traffic time series?
  - ✓ Low-rank models ✓ Temporal regularization
- (Solution) Time series trend modeling in the low-rank framework?
  - Global time series trend modeling (low-rank model):

 $\min_{\boldsymbol{x}} \|\mathcal{C}(\boldsymbol{x})\|_{*}$ s. t.  $\|\mathcal{P}_{\Omega}(\boldsymbol{x} - \boldsymbol{y})\|_{2} \leq \epsilon$ 

• Local time series trend modeling (temporal regularization):

$$\mathcal{R}_{\tau}(\boldsymbol{x}) = \frac{1}{2} \|\boldsymbol{\ell} \star \boldsymbol{x}\|_2^2$$

• (Highlight) A unified framework with the FFT implementation.

#### References

#### A short list:

- [Liu'22] G. Liu (2022). Time series forecasting via learning convolutionally low-rank models. IEEE Transactions on Information Theory, 68(5): 3362–3380.
- [Liu & Zhang'23] G. Liu and W. Zhang (2023). Recovery of future data via convolution nuclear norm minimization. IEEE Transactions on Information Theory, 69(1): 650–665.



Al and machine learning valorize the real-world data and foresee the physical world. Source: https://spatiotemporal-data.github.io



# POLYTECHNIQUE Montréal

UNIVERSITÉ D'INGÉNIERIE



# Thanks for your attention!

# Any Questions?

#### Slides: https://xinychen.github.io/slides/LCR24.pdf

About me:

- A Homepage: https://xinychen.github.io
- G GitHub: https://github.com/xinychen
- How to reach me: chenxy346@gmail.com