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Interpretable Time Series Autoregression for
Periodicity Quantification

Xinyu Chen, Vassilis Digalakis Jr, Lijun Ding, Dingyi Zhuang, and Jinhua Zhao

Abstract—Time series autoregression is a classical statistical model for capturing auto-correlations and identifying temporal patterns
such as periodicity and seasonality. In this work, we propose a novel sparse autoregression framework from an interpretable machine
learning perspective and the model interpretability for periodicity quantification is reinforced by ℓ0-norm induced sparsity constraints.
On the time-varying time series data, we reformulate the sparse autoregression and convert the involved optimization problem into a
mixed-integer optimization (MIO). To accelerate it, we develop a subspace pursuit based decision variable pruning (DVP) strategy to
reduce the search space. On the multidimensional time series that involves complicated spatial and temporal dimensions, we propose
a spatially- and time-varying sparse autoregression model and resolve the corresponding MIO problem by developing a two-stage
optimization scheme. In particular, the proposed scheme makes the model scalable to large problems even with millions of decision
variables. Empirically, we conduct extensive experiments to evaluate the proposed models on real-world time series data. First, we
demonstrate that the MIO solver can be drastically accelerated through the DVP strategy, while maintaining the same solution quality
as a full MIO solver. Applying the time-varying sparse autoregression model to ridesharing trip data, we uncover both daily and weekly
periodicities and reveal long-term changes in regularity of human mobility. Second, we demonstrate the spatial patterns of yearly
seasonality in climate variable time series such as temperature and precipitation across the past four decades, and our model allows to
discover dynamic climate patterns and identify climate phenomena such as El Niño in sea surface temperature. Thus, our framework
lays an insightful foundation for understanding periodicity and seasonality in real-world time series.

Index Terms—Interpretable machine learning, time series analysis, sparse autoregression, periodicity quantification, mixed-integer
optimization, urban transportation systems, human mobility, climate systems

✦

1 INTRODUCTION

MANY real-world systems exhibit complex tempo-
ral patterns, including periodicity, seasonality, and

anomalies. Detecting and understanding these patterns is
essential for anticipating system behavior, identifying dis-
ruptions, and supporting operational decision-making. In
dynamic environments such as urban transportation and
climate systems, periodicities can shift due to external fac-
tors—policy interventions, demand changes, environmen-
tal variability, global events, or extreme climate phenom-
ena—making interpretable, adaptive, and data-driven meth-
ods indispensable. A central challenge is to automatically
identify dominant periodic components from spatially- and
time-varying systems, track their evolution over a long-term
time period, and distinguish true structural changes from
random variability.

Urban transportation systems display strong periodicity
driven by commuting patterns, business cycles, and travel
demand. Fig. 1 shows the regularity of ridesharing activ-
ity in Chicago, highlighting its weekly mobility patterns.
However, such patterns are not fixed—they evolve with
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infrastructure changes, economic conditions, and disruptive
events. For example, the COVID-19 pandemic in 2020 led
to a collapse in established mobility periodicities due to
lockdowns and shifts to remote work. These disruptions
raise key questions: How do periodic structures evolve over
time? Can we systematically quantify such changes in a time-
varying system? Addressing these questions is critical for
planning, forecasting, and adaptive resource allocation.
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Fig. 1: Hourly time series of aggregated ridesharing trip
counts in Chicago during the first two weeks (336 hours)
starting April 1, 2024. The data exhibits strong periodicity
with a weekly cycle ∆t = 7× 24 = 168.

Climate systems also exhibit periodic and seasonal pat-
terns that shape temperature, ocean circulation, and at-
mospheric dynamics. Yet these patterns evolve over time
due to long-term variability and climate change. Traditional
time series decomposition methods [1], [2], [3] assume
fixed seasonal structure and often ignore gradual or region-
specific shifts. Accurately monitoring such changes is es-
sential for understanding climate dynamics, anticipating ex-
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treme events, and supporting policy-making. This calls for
interpretable, data-driven models that can robustly uncover the
dominant seasonal components and track their evolution across
space and time.

To address these needs, we develop a unified inter-
pretable machine learning framework for identifying and
quantifying time-varying periodicity and structural shifts in
real-world time series. Our models build on classical autore-
gression (AR) [4], [5] but incorporate sparse structure via ℓ0-
norm induced sparsity constraints to promote interpretabil-
ity. Inspired by recent advances in sparse regression [6]
and time series convolution [7], we formulate interpretable
AR models capable of isolating dominant periodic patterns
over time and space. To the best of our knowledge, this
represents the first application of exact sparse AR to the
task of periodicity quantification in real-world complex time
series. Overall, this work makes the following contributions:

• Sparse Autoregression (SAR): We introduce an
interpretable framework for identifying dominant
auto-correlations from time series by reformulating
AR with ℓ0-norm induced sparsity constraints. The
problem is solved exactly via mixed-integer opti-
mization (MIO) techniques, providing more accurate
and reliable periodicity quantification than conven-
tional greedy methods.

• Time-Varying SAR (TV-SAR): We extend SAR to
characterize non-stationary time series, enforcing
consistent support sets across time segments to en-
hance interpretability. To improve scalability, we in-
troduce a decision variable pruning (DVP) strategy
that narrows the MIO search space using fast greedy
approximations such as subspace pursuit.

• Spatially- and Time-Varying SAR (STV-SAR): We
propose a scalable model for multidimensional time
series that vary over both space and time. A two-
stage optimization procedure—global support set se-
lection via MIO, followed by local coefficient estima-
tion via quadratic optimization—makes the method
tractable for millions of decision variables.

• Extensive Real-World Validation: We demonstrate
the effectiveness of our models on large-scale trans-
portation and climate datasets. TV-SAR reveals dy-
namic changes in daily and weekly mobility pat-
terns related to periodicity in New York City (NYC)
during the period of the COVID-19 pandemic. STV-
SAR captures evolving spatial patterns of seasonality
in North American climate variables and identifies
global sea surface temperature dynamics related to
El Niño.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews related work. Section 3 introduces notation
and background on AR models. Section 4 presents the core
SAR model. Sections 5 and 6 develop the TV-SAR and STV-
SAR extensions, respectively. Section 7 reports empirical
results. Finally, we conclude this study in Section 8.

2 LITERATURE REVIEW

2.1 Classical and Time-Varying Autoregression
Time series modeling is a foundational tool in transporta-
tion, climate science, econometrics, and other fields [8], [9],

[10]. Classical models such as autoregression (AR), mov-
ing average (MA), and their combinations (e.g., ARIMA)
are widely used for capturing temporal dependencies and
seasonal structures in univariate time series data [4], [5],
[11]. Among these, AR models remain popular due to their
simplicity and interpretability. More recently, applications
have demanded models that adapt to non-stationary and
time-varying systems. Time-varying AR extends classical
AR by allowing coefficients to change over time [12], often
incorporating structural or smoothness constraints to ensure
interpretability and stability [13]. AR has also been general-
ized to multivariate and spatial-temporal settings, such as
Vector Autoregressive (VAR) models [14], [15]. These ideas
have been successfully applied in finance, neuroscience, and
dynamic mobility systems.

2.2 Sparse Autoregression and Interpretability
Traditional AR models include all lagged terms up to a fixed
order, which can lead to overfitting and obscure the most
meaningful temporal dependencies—particularly in high-
order settings [16]. Sparse AR addresses this limitation by
selecting a subset of informative lags, thereby improving
both parsimony and interpretability. LASSO-based methods
[17] have been widely used to induce sparsity in AR mod-
els, offering scalability and robustness in high-dimensional
contexts [18]. Recent work has further explored structured
sparsity in time series models. For instance, [19], [20], [21]
develop interpretable sparse formulations for nonlinear and
dynamical systems, while [6] introduces structured sparsity
constraints over graphs to model slowly evolving regression
coefficients. A related line of research by [22] proposes a
sparsity-controlled VAR framework, allowing users to tune
multiple dimensions of sparsity for enhanced interpretabil-
ity of causal discovery. While this approach offers flexibil-
ity and shows improved predictive accuracy over LASSO-
based alternatives, it lacks scalability and does not provide
exact solutions with guaranteed optimality.

These advances move beyond classical LASSO penal-
ties by incorporating domain-specific sparsity structures.
However, existing methods typically do not enforce struc-
tured sparsity across time and space simultaneously, nor do
they leverage exact combinatorial optimization. Our work
bridges this gap by introducing a framework for structured
sparse AR with exact support set control over spatiotempo-
ral dimensions.

2.3 Exact Sparse Regression via Mixed-Integer Opti-
mization
Sparse regression via ℓ0-norm regularization—also known
as best subset selection—has long been recognized for its
statistical optimality and interpretability, but was histori-
cally limited by its combinatorial complexity. Early heuristic
methods include Orthogonal Matching Pursuit and CoSaMP
[23], [24], [25], while convex relaxations such as the LASSO
[17] and non-convex penalties such as SCAD and MCP
offered tractable alternatives [26]. The solution quality of
these methods often negatively impact the interpretability
of sparse structures. Recent breakthroughs in optimization
have made it practically feasible to solve ℓ0-norm regular-
ized problems exactly using MIO. Following the seminal
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work of [27], several studies have scaled MIO-based sparse
regression to large datasets [28], [29], [30]. These methods
retain the interpretability of exact sparse models while
achieving near-LASSO speed.

Our work builds directly on this line, leveraging the MIO
machinery developed in [6] to solve structured sparse re-
gression with controlled support set consistency. However,
unlike prior work which focused on static or graph-based
regression, we apply these methods to time series with
dynamic and spatial variation, developing the first exact
sparse AR framework for periodicity quantification in large-
scale real-world systems.

3 PRELIMINARIES

3.1 Notation

In Table 1, we summarize the basic symbols and notation
used throughout the paper. Notably, R denotes the set of
real numbers, and Z+ denotes the set of positive integers.

TABLE 1: Summary of basic notation.

Notation Description

x ∈ R Scalar
x ∈ Rn Vector of length n
X ∈ Rm×n Matrix of size m× n
[i] Integer set {1, 2, . . . , i}, i ∈ Z+

[i, j] Integer set {i, i+ 1, . . . , j}, i < j
∥ · ∥0 ℓ0-norm (number of nonzero entries)
∥ · ∥1 ℓ1-norm (sum of absolute values)
∥ · ∥2 ℓ2-norm (Euclidean norm)
tr(·) Trace of a square matrix
supp(·) Support set (indices of nonzero entries)
N (·) Gaussian distribution
E[·] Expectation
∪ Union of sets
∩ Intersection of sets

3.2 Time Series Autoregression

AR is a widely used technique for modeling temporal de-
pendencies in univariate time series [4], [5]. It expresses each
observation as a linear combination of its past values, plus
noise. For a univariate time series x = (x1, x2, . . . , xT )

⊤ ∈
RT , the order-d AR model is written as:

xt =
d∑

k=1

wkxt−k + ϵt, ∀t ∈ [d+ 1, T ], (1)

where d ∈ Z+ is the AR order, and w =
(w1, w2, . . . , wd)

⊤ ∈ Rd is the coefficient vector. As the
residual, ϵt denotes noise, typically modeled by a Gaussian
assumption: ϵt ∼ N (0, σ2) for the variance σ2 > 0. The
coefficient wk captures the linear dependence between xt

and its k-lagged value xt−k.
To estimate the coefficients, we minimize the sum of

squared residuals such that

ŵ = argmin
w

T∑
t=d+1

(
xt −

d∑
k=1

wkxt−k

)2

. (2)

By defining the (T − d)-by-d design matrix and length-(T −
d) target vector as:

A =


xd xd−1 · · · x1

xd+1 xd · · · x2

...
...

. . .
...

xT−1 xT−2 · · · xT−d

 , x̃ =


xd+1

xd+2

...
xT

 , (3)

respectively. Then, Problem (2) becomes

ŵ = argmin
w

∥x̃−Aw∥22.

This leads to the standard least squares solution: ŵ =
(A⊤A)−1A⊤x̃, assuming A⊤A is invertible. In more gen-
eral settings, this solution can also be expressed using the
Moore-Penrose pseudoinverse as ŵ = A†x̃.

A time series x is said to exhibit periodicity with period
∆t ∈ Z+ if xt ≈ xt+∆t for many t, typically reflected by
high auto-correlation at lag ∆t, i.e., Cov(xt, xt+∆t) ≫ 0.
Seasonality refers to periodic patterns tied to calendar cycles
(e.g., daily, weekly, and yearly) and can be modeled as a
component st satisfying st = st+∆t. In the AR framework,
strong periodicity at lag ∆t manifests as a large positive
coefficient w∆t, allowing us to infer dominant cycles directly
from the estimated sparse coefficient vector w.

Fig. 2 illustrates the coefficient vector w estimated for
the Chicago ridesharing time series using standard least
squares. The resulting vector is dense, with both positive
and negative coefficients. A large positive wk at lag k = 168
reflects the strong weekly periodicity of the time series.
However, this dense representation makes it difficult to
identify which lags are most important and to quantify
periodic structure precisely. This motivates the need for
sparse and interpretable AR models.
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Fig. 2: Estimated AR coefficients w ∈ Rd for the Chicago
ridesharing time series in Fig. 1, with order d = 168.

4 SPARSE AUTOREGRESSION

This section introduces Sparse Autoregression (SAR) with
ℓ0-norm induced sparsity constraints for identifying dom-
inant auto-correlations in time series. We first describe the
modeling framework and associated statistical guarantees.
We then present an MIO formulation for solving the re-
sulting optimization problem exactly and compare solution
quality across algorithms.

4.1 Model Description

The ℓ0-norm of a vector w ∈ Rd is defined as ∥w∥0 =
| supp(w)| ≤ d, i.e., the number of nonzero entries. While
the least squares estimator in Eq. (2) produces dense so-
lutions, it does not highlight dominant auto-correlations,
making it difficult to quantify periodicity or seasonality.
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To address this, we impose sparsity and non-negativity
constraints on the coefficient vector w, yielding the follow-
ing optimization problem:

min
w

∥x̃−Aw∥22
s.t. 0 ≤ w ≤M, ∥w∥0 ≤ τ,

(4)

where M ∈ Rd is a vector with all entries equal to a
sufficiently large constant M ∈ R, and τ ∈ Z+ controls
the maximum number of nonzero coefficients. The non-
negativity constraint encourages interpretability by focusing
on positive auto-correlations, as is typical for periodicity in
time series.

Next, we study the statistical learnability of a more gen-
eral version of Problem (4)—excluding the non-negativity
constraint. The following result, which we prove in Ap-
pendix A, relies on standard arguments [31].

Theorem 1 (Excess Risk Bound for SAR). Let x̃ = Aw⋆ + ϵ,
where:

• A ∈ R(T−d)×d is fixed and deterministic,
• w⋆ ∈ Rd satisfies ∥w⋆∥0 ≤ τ < d/2,
• ϵ ∼ N (0, σ2Id) is i.i.d. Gaussian noise.

Let ŵ be the solution to Problem (4). Then the expected in-sample
prediction error satisfies:

E
[∥A(ŵ −w⋆)∥22

T − d

]
≲ σ2 · τ

T − d

(
log

(
d

τ

)
+ 1

)
.

Theorem 1 demonstrates that the error scales gracefully with
sparsity level τ and AR order d.

4.2 MIO Reformulation
Due to the combinatorial nature of the ℓ0-norm induced
constraint, Problem (4) cannot be directly solved by MIO
solvers. However, we can equivalently express the problem
as a mixed-integer quadratic optimization problem by intro-
ducing binary variables that encode the support of w. Let
z ∈ {0, 1}d be a vector of binary variables, where zk = 1
indicates that wk is allowed to be nonzero. We rewrite
Problem (4) as:

min
w,z

∥x̃−Aw∥22
s.t. 0 ≤ wk ≤M · zk, ∀k ∈ [d],

d∑
k=1

zk ≤ τ,

zk ∈ {0, 1}, ∀k ∈ [d].

(5)

The binary support constraint
d∑

k=1

zk ≤ τ ensures that at

most τ coefficients in w are nonzero.
Problem (5) is nonconvex due to the ℓ0-norm induced

constraint and is generally NP-hard to solve exactly. In
principle, enumerating all support sets of cardinality τ
would incur a combinatorial cost of O(dτ ), making exact
search infeasible for large d or τ . Modern MIO solvers by-
pass this challenge using branch-and-bound techniques and
cutting-plane methods (e.g., [6]), which allow them to find
globally optimal solutions efficiently in practice. Compared
to greedy methods such as subspace pursuit, MIO yields

higher-quality solutions with provable optimality guaran-
tees. The use of binary variables enables precise support
set control, which is essential for model interpretability in
settings where dominant lag selection matters.

4.3 Empirical Comparison of Solution Quality

The estimation method has a significant impact on the
interpretability and fidelity of SAR models. To highlight
this, we compare two approaches for solving Problem (4): (i)
a greedy non-negative subspace pursuit (NNSP) algorithm
[7], and (ii) the exact MIO formulation from Eq. (5). We use
the time series from Fig. 1, with AR order d = 168 (one
week of hourly lags) and sparsity level τ = 2. The solution
returned by NNSP is:

w = (0, . . . , 0, 0.02︸︷︷︸
k=53

, 0, . . . , 0, 0.96︸︷︷︸
k=168

)⊤,

with objective value f(w) = 8.32×107. In contrast, the MIO
solver yields:

w = (0.22︸︷︷︸
k=1

, 0, . . . , 0, 0.77︸︷︷︸
k=168

)⊤,

with objective value f(w) = 6.25×107. The MIO solution is
both quantitatively superior (lower error) and qualitatively
more interpretable: it identifies lag k = 1 (local auto-
correlation) and lag k = 168 (weekly periodicity), consistent
with domain knowledge. The NNSP solution, by contrast,
includes a spurious lag at k = 53 with negligible weight.

When increasing the sparsity level to τ = 3, both solvers
return:

w = (0.33︸︷︷︸
k=1

, 0, . . . , 0, 0.20︸︷︷︸
k=167

, 0.46︸︷︷︸
k=168

)⊤,

highlighting strong lags near daily and weekly cycles.
Fig. 3 summarizes how the selected support sets and

coefficient magnitudes evolve as a function of τ . These
results confirm that high-quality solutions are critical for in-
terpretability and that MIO offers robust, principled support
recovery even when greedy methods fail.
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Fig. 3: Illustration of the dominant coefficients of SAR on the
Chicago ridesharing trip time series (see Fig. 1) at different
sparsity levels. The support set and the number of nonzero
coefficients are denoted by Ω and |Ω|, respectively.
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5 TIME-VARYING SPARSE AUTOREGRESSION

In this section, we now extend the SAR formulation to cap-
ture non-stationary dynamics by allowing the coefficients
to vary across prescribed time segments. This yields the
Time-Varying Sparse Autoregression (TV-SAR) model. To
solve the associated MIO problem more efficiently, we also
introduce a decomposition-based DVP strategy.

5.1 Model Description

Time-varying AR models allow the AR coefficients to
evolve across time, capturing structural shifts in the data-
generating process. We partition the time series into Γ ∈ Z+

time segments, where each segment γ ∈ [Γ] contains
Tγ ∈ Z+ time steps. Let xγ = (xγ,1, xγ,2, . . . , xγ,Tγ

)⊤ ∈ RTγ

denote the segment corresponding to time segment γ. We
model each segment with an independent dth-order AR pro-
cess, with potentially different coefficient vectors wγ ∈ Rd:

xγ,t =
d∑

k=1

wγ,kxγ,t−k + ϵγ,t, ∀t ∈ [d+ 1, Tγ ], γ ∈ [Γ],

where ϵγ,t ∼ N (0, σ2). To ensure interpretability and
temporal consistency, we impose the following structural
constraints: (i) each wγ is sparse and non-negative, and
(ii) all wγ share the same support set. Formally, we let
Φ = {wγ}Γγ=1 represent the set of coefficient vectors, refer-
ring to the decision variables in the optimization problem of
TV-SAR such that

min
Φ

Γ∑
γ=1

∥x̃γ −Aγwγ∥22

s.t. 0 ≤ wγ ≤M, ∥wγ∥0 ≤ τ, ∀γ ∈ [Γ],

supp(wγ) = supp(wγ+1), ∀γ ∈ [Γ− 1],

(6)

where Aγ ∈ R(Tγ−d)×d is the design matrix, x̃γ ∈ RTγ−d is
the response vector for time segment γ, M ∈ Rd consists of
all sufficiently large constant M > 0, and τ ∈ Z+ controls
global sparsity.

Remark 1. The constraint of the same support set enforces
temporal smoothness by requiring identical sparsity pat-
terns across time segments. This is a special case of the
sparsely-varying support set constraint proposed in [6],
where the symmetric difference between support sets is
bounded:

| supp(wγ)∪supp(wγ+1)|−| supp(wγ)∩supp(wγ+1)| ≤ τ̃ .

Setting τ̃ = 0 recovers the shared support set case.

To encode Eq. (6) as an MIO problem, we again introduce
binary variables z ∈ {0, 1}d to represent the global support
set. The resulting MIO formulation is given by

min
Φ, z

Γ∑
γ=1

∥x̃γ −Aγwγ∥22

s.t. 0 ≤ wγ ≤M · z, ∀γ ∈ [Γ],
d∑

k=1

zk ≤ τ,

zk ∈ {0, 1}, ∀k ∈ [d].

(7)

Here, the binary variable zk = 1 if lag k is selected for
any γ, enforcing a common support set across all time seg-
ments. TV-SAR thus extends SAR to non-stationary settings,
allowing the autoregressive weights to vary across time
segments while preserving interpretability through global
sparsity and support set consistency.

5.2 Acceleration with Decision Variable Pruning

The computational cost of solving TV-SAR with MIO in-
creases with the AR order d, due to the total number of
decision variables (Γ + 1)d, which includes Γd real-valued
variables for the AR coefficients wγ and d binary variables
in z. When the sparsity level τ is much smaller than d, most
of these variables are expected to be zero. We exploit this
by introducing a Decision Variable Pruning (DVP) strategy,
which leverages subspace pursuit to pre-select a reduced
candidate set of variables before solving the MIO. The
strategy proceeds in three steps (illustrated in Fig. 4):

• Step 1: Relax and Decompose TV-SAR. We relax the
TV-SAR formulation in Eq. (6), keeping only non-
negativity and a looser sparsity constraint τ0 > τ .
This yields Γ decomposable subproblems:

min
wγ

∥x̃γ −Aγwγ∥22
s.t. wγ ≥ 0, ∥wγ∥0 ≤ τ0.

(8)

• Step 2: Implement Subspace Pursuit. We first solve
each subproblem using NNSP. Let Sγ denote the
support set of the resulting solution for time segment
γ ∈ [Γ], see Algorithm 1. We then form the global
candidate set

S̃ =
Γ⋃

γ=1

Sγ .

• Step 3: Solve the Reduced MIO. We solve the origi-
nal MIO problem in Eq. (7), restricting all decision
variables to the reduced index set S̃. This results
in a significantly smaller problem with (Γ + 1) · |S̃|
variables.

Decision variables {wγ ,wγ+1}

wγ

wγ+1

1 2 3 4 5 6 7 8 9

⇒
Subspace pursuit (τ0 = 3)

wγ

wγ+1

1 2 3 4 5 6 7 8 9

⇕
supp(wγ) = {4, 6, 9}

supp(wγ+1) = {3, 6, 7}
S̃ = supp(wγ) ∪ supp(wγ+1)

= {3, 4, 6, 7, 9}

⇐
DVP

Decision variables {wγ,S̃ ,wγ+1,S̃}

wγ,S̃

wγ+1,S̃

3 4 6 7 9

Fig. 4: Illustration of the DVP strategy. Subspace pursuit is
used to select an index set S̃ of candidate lags. The final
MIO is then solved on this reduced support set, where the
number of coefficients is reduced from 2d to 2|S̃| (e.g., from
18 coefficients to 10 coefficients in the illustration).

We integrate the DVP strategy into an MIO solver and
refer to the resulting hybrid method as MIO-DVP, parame-
terized by τ0. The approach significantly reduces the search
space—especially for large d (e.g., d = 168 for weekly
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Algorithm 1 Decision Variable Pruning via Non-Negative
Subspace Pursuit

1: Input: Time series xγ ∈ RT , γ ∈ [Γ]; AR order d; relaxed
sparsity τ0 > τ .

2: for γ ∈ [Γ] do
3: Construct x̃γ ∈ RT−d and design matrix Aγ ∈

R(T−d)×d.
4: Initialize wγ := 0, Sγ := ∅, and residual r := x̃γ .
5: while not converged do
6: Identify ℓ: index set of τ largest entries in |A⊤

γ r|.
7: Sγ ← Sγ ∪ ℓ
8: Solve wγ,Sγ

:= argmin
v≥0

∥x̃γ −Aγ,Sγ
v∥22.

9: Keep τ largest entries of wγ , zero out the rest.
10: Update Sγ and wγ,Sγ

.
11: Update residual: r ← x̃γ −Aγ,Sγ

wγ,Sγ
.

12: end while
13: end for

14: Return S̃ :=
Γ⋃

γ=1

Sγ .

periodicity)—and makes MIO tractable at scale. MIO-DVP
can be viewed as a backbone-type algorithm [32]: an iterative
two-stage method that first screens candidate features and
then solves the final problem over this reduced support set.
Such screening strategies have been developed from both
statistical (e.g., sure screening [33]) and optimization (e.g.,
safe screening [34]) perspectives.

6 SPATIALLY AND TIME-VARYING SPARSE AU-
TOREGRESSION

In this section, we introduce the Spatially and Time-Varying
Sparse Autoregression (STV-SAR) model, a generalization
of TV-SAR that accounts for both temporal and spatial
variations in AR behavior. While TV-SAR captures time-
varying dynamics within a single univariate time series,
STV-SAR is designed for settings involving large spatiotem-
poral panels of time series (e.g., satellite-based climate data),
where thousands of spatial locations exhibit their own local
dynamics. This additional spatial dimension leads to a more
expressive—but also more complex—model. In particular,
when the number of spatial locations (expressed in terms of
their latitudes and longitudes) M×N = 1, STV-SAR reduces
to TV-SAR. Conversely, STV-SAR enables us to model het-
erogeneity across locations while leveraging global sparsity
and seasonality structures. To solve the associated MIO
problem efficiently, we describe a two-stage optimization
scheme that separates the learning processes of the global
support set and individual coefficient vectors.

6.1 Model Description
Considering a collection of time series arranged over an
M × N spatial grid, we let Xγ,t ∈ RM×N denote the
spatial matrix at time t ∈ [Tγ ] in time segment γ ∈ [Γ].
Each grid cell (m,n) contains a multivariate time series
{xm,n,γ,t}t∈[Tγ ],γ∈[Γ]. Following the same logic as in Section
5, we model each time series with a d-order AR process, with
coefficient vectors wm,n,γ ∈ Rd, and impose a shared global

support set across all spatial locations and time segments.
Let x̃m,n,γ and Am,n,γ be the lagged response vector and
design matrix (as in Eq. (3)), respectively, then the MIO
problem is formulated as follows,

min
Φ, z

∑
m,n,γ

∥x̃m,n,γ −Am,n,γwm,n,γ∥22

s.t. 0 ≤ wm,n,γ ≤M · z, ∀m,n, γ,
d∑

k=1

zk ≤ τ,

zk ∈ {0, 1}, ∀k ∈ [d],

(9)

where Φ = {wm,n,γ}m∈[M ],n∈[N ],γ∈[Γ] denotes the set of
coefficient vectors. The binary vector z ∈ {0, 1}d encodes
the shared support set,M > 0 is a sufficiently large upper
bound on the coefficients, and τ ∈ Z+ is a global sparsity
budget.

This formulation assumes that only a few autoregressive
lags drive the spatiotemporal dynamics across the entire
system. For instance, in climate systems, monthly time series
such as temperature or precipitation often exhibit strong
seasonal structure. By setting d = 12, the model can select
from lags corresponding to past months in the year. If, for
example, z12 = 1 in the optimal solution, it indicates that the
data exhibits strong yearly periodicity—i.e., each month’s
value is relevant to its value one year ago. Other selected
lags (e.g., z1, z3, etc.) can be interpreted as short-term auto-
correlations or sub-seasonal effects.

6.2 Acceleration via Global Support Estimation

When dealing with large spatiotemporal systems—such as
climate datasets covering thousands of grid cells across mul-
tiple decades—estimating a separate SAR model for each
individual time series becomes computationally infeasible.
However, these time series often share common underlying
periodicity and auto-correlation patterns. To exploit this
structure, we first estimate a global SAR structure by fitting
a single sparse coefficient vector w ∈ Rd across M ×N × Γ
time series. This global sparsity pattern can be reused to
simplify subsequent localized coefficient estimation and
identify a shared support set that generalizes across space
and time. According to the property of matrix trace, we
rewrite the objective function as follows,

f(w) =
∑

m,n,γ

∥x̃m,n,γ −Am,n,γw∥22

=
∑

m,n,γ

(x̃m,n,γ −Am,n,γw)
⊤
(x̃m,n,γ −Am,n,γw)

=
∑

m,n,γ

(
tr
(
ww⊤A⊤

m,n,γAm,n,γ

)
− 2w⊤A⊤

m,n,γx̃m,n,γ

)
+ C

= tr

(
ww⊤ ∑

m,n,γ

A⊤
m,n,γAm,n,γ

)
− 2w⊤ ∑

m,n,γ

A⊤
m,n,γx̃m,n,γ + C,

(10)
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where C is the constant term. In particular, if one defines
the following matrix and vector:

P :=
∑

m,n,γ

A⊤
m,n,γAm,n,γ , q :=

∑
m,n,γ

A⊤
m,n,γx̃m,n,γ .

(11)
Then the objective can be simplified to

f(w) = tr(ww⊤P )− 2w⊤q + C. (12)

Following that form, we encode the sparsity using binary
variables z ∈ {0, 1}d and rewrite the MIO as follows,

min
w, z

tr(ww⊤P )− 2w⊤q

s.t. 0 ≤ w ≤M · z, ∀m,n, γ,
d∑

k=1

zk ≤ τ,

zk ∈ {0, 1}, ∀k ∈ [d].

(13)

Thus, the resulting global support set is given by

Ω := {k ∈ [d] | wk > 0} = supp(w) = supp(z). (14)

6.3 Estimating Individual Coefficient Vectors

In practice, learning the global support set is advan-
tageous because (i) the underlying periodicity structure
can be quantified across M × N spatial locations and
Γ time segments, and (ii) the dominant indices of auto-
correlations can be identified and estimated efficiently with-
out having to find them explicitly for each individual
coefficient vector. To learn the sparse coefficient vectors
{wm,n,γ}m∈[M ],n∈[N ],γ∈[Γ] within the given support set Ω
in Eq. (14), the optimization problem now becomes

min
wm,n,γ

∥x̃m,n,γ −Am,n,γwm,n,γ∥22
s.t. PΩ(wm,n,γ) ≥ 0, P⊥

Ω (wm,n,γ) = 0,
(15)

for all m ∈ [M ], n ∈ [N ], γ ∈ [Γ]. Here, PΩ(·) denotes
the orthogonal projection supported on Ω. For any vector
w ∈ Rd with entries {wk}k∈[d], the orthogonal projection
takes [PΩ(w)]k = wk if k ∈ Ω; otherwise, [P⊥

Ω (w)]k = 0 for
any k /∈ Ω in the complement of Ω. That means that the kth
entry of wm,n,γ is zero when satisfying k ∈ [d] and k /∈ Ω
simultaneously. Thus, we only have |Ω| entries in wm,n,γ

to estimate. By doing so, we can solve this optimization
problem by quadratic optimization with linear constraints.

7 EXPERIMENTS

In this section, we conduct extensive experiments to evalu-
ate the proposed SAR models on real-world time series data.
The time-varying ridesharing trip time series dataset in
NYC allows one to discover daily and weekly periodicities
and their changes across different periods from 2019 to 2023.
The climate variable time series datasets, including North
America climate variables and sea surface temperature, are
spatially- and time-varying, enabling the tasks such as the
spatial pattern discovery of yearly seasonality and the iden-
tification of system evolution related to climate dynamics.

7.1 Human Mobility Periodicity
7.1.1 Ridesharing Trip Time Series
In this work, we examine the proposed TV-SAR model on
the ridesharing trip data in NYC, ranging from February
2019 to December 2023. In terms of human mobility, trips
to airports or leaving airports are closely related to the
flight schedule, which usually demonstrate strong daily and
weekly periodicities. Fig. 5 shows the pickup and dropoff
trip time series of John F. Kennedy International Airport
in NYC. In Figs. 5(a) and 5(b), the trip time series of each
week is visualized as a row of the heatmap, and there
are around 260 weeks from 2019 to 2023 in total. As can
be seen, pickup trips show perturbation and fluctuation
due to the influential factors such as flight delay, baggage
claim, and travel time to ridesharing pickup zones. The peak
time demanding ridesharing services is the nighttime. In
contrast, dropoff trips to the departure area of the airport
are uniform across different weeks. There are morning and
afternoon peak hours with remarkable dropoff trips to the
airport. Figs. 5(c) and 5(d) show the daily periodicity of
aggregated time series of pickup and dropoff trips, in which
the dropoff trips are more daily and weekly periodic than
the pickup trips.

TABLE 2: Objective function f(w) in Eq. (4) on the rideshar-
ing pickup trip time series in John F. Kennedy International
Airport. The solution algorithms include NNSP, MIO-DVP,
and MIO. The unit of objective function values is×107. Note
that the lowest objective function values are emphasized in
bold fonts. The last two rows present the average computa-
tional times (in seconds) of the algorithm.

Data Sparsity NNSP MIO-DVP MIO-DVP MIO(τ0 = 5) (τ0 = 10)

2019 τ = 4 8.48 8.48 8.24 8.24
τ = 6 8.41 - 8.07 8.07

2020 τ = 4 2.12 2.12 1.90 1.90
τ = 6 2.03 - 1.86 1.86

2021 τ = 4 3.11 3.11 3.06 3.06
τ = 6 3.06 - 2.97 2.97

2022 τ = 4 6.85 6.76 6.49 6.49
τ = 6 6.69 - 6.34 6.34

2023 τ = 4 8.59 8.45 8.14 8.14
τ = 6 8.39 - 7.95 7.95

Cost τ = 4 0.03 s 0.32 s 0.67 s 221 s
τ = 6 0.04 s - 0.66 s 223 s

7.1.2 Comparison among NNSP, MIO-DVP, and MIO
Basically, we examine three solution algorithms—NNSP,
MIO-DVP, and MIO—for addressing Problem (4) on the
ridesharing pickup trip time series across five years. The
sparsity levels in these algorithms are set as τ = 4, 6. In
particular, we test the MIO-DVP algorithm with different
sparsity levels τ0 = 5, 10 for pruning decision variables,
while NNSP is an important baseline for measuring the
performance gain. Table 2 shows the objective function
values of SAR with different algorithmic settings. As can be
seen, the NNSP algorithm fails to find the solution as good
as the MIO algorithm. The MIO-DVP algorithm performs
better than NNSP if a well-designed pruning strategy such
as NNSP with τ0 = 10 is available. Herein, the sparsity
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(a) Pickup trips across weeks
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(b) Dropoff trips across weeks

0 24 48 72 96 120 144 168
Time step (hour)

0

500

1000

Tr
ip

 c
ou

nt

(c) Aggregated time series of pickup trips
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(d) Aggregated time series of dropoff trips

Fig. 5: Hourly time series of the aggregated ridesharing trip counts of John F. Kennedy International Airport in NYC
from 2019 to 2023. (a-b) The row of each heatmap refers to the ridesharing trip time series of each week. (c-d) The time
series refers to the average ridesharing trips of each hour within a week window, while the standard deviations are also
presented.
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(a) Pickup trips
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(b) Dropoff trips

Fig. 6: Sparse coefficient vectors wγ ∈ R168, γ ∈ [2, 60] of TV-SAR on the ridesharing trip time series from February 2019
to December 2023, i.e., 59 months in total. Since each time series data corresponds to to one month, there are 59 coefficient
vectors that are represented as 59 rows in the heatmap. Each time series is accumulated from January to the end of the
given month. Three most significant auto-correlations are revealed at k = 1, 24, 168, referring to local auto-correlation,
daily periodicity, and weekly periodicity, respectively.

level τ0 is an influential factor in the MIO-DVP algorithm
for finding a good solution as MIO. In contrast to MIO,
one remarkable advantage of MIO-DVP is the efficiency and
scalability due to the reduction of search space.

7.1.3 Periodicity of Ridesharing Trips
As shown in Fig. 5, the ridesharing pickup/dropoff trip
time series is time-varying in a long-term range. In the
time series, one can observe the remarkable reduction of
total trip counts in 2020 due to the COVID-19 pandemic,
recovering slowly until the end of 2021. To identify such
kind of time-varying system behaviors, we use the proposed
TV-SAR model. The time series of each month is regarded
as a time segment. The order of autoregression is set as
d = 168, referring to a weekly cycle. The sparsity level is

set as τ = 4 which aims to cover the indices of daily and
weekly periodicities at k = 24 and k = 168, respectively.

Of the results in Fig. 6, the proposed model identifies the
support set as supp(wγ) = {1, 24, 167, 168}, ∀γ ∈ [2, 60],
corresponding to local, daily, and weekly auto-correlations.
Fig. 6(a) shows the periodicity pattern changes of pickup
trips from 2019 to 2023. As can be seen, the strength re-
duction of weekly periodicity and the increasing strength
of daily periodicity are remarkable in 2020. The similar
results are also demonstrated in Fig. 6(b) for dropoff trips,
namely, the decreasing strength of weekly periodicity and
the increasing strength of daily periodicity in 2020. An-
other finding from Fig. 6(b) is the increasing local auto-
correlations at k = 1 in 2020, implying increasing variability
in the dropoff trips. Observing the coefficients at k = 168,
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Fig. 7: Monthly aggregated minimum temperature across North America of January from 2010 to 2019. The color scale
represents the temperature in degrees Celsius, with blue tones indicating lower temperatures and red tones indicating
higher temperatures.

the weekly periodicity of dropoff trips in 2019, 2021, 2022,
and 2023 are stronger than pickup trips, and such evidence
is consistent with pickup and dropoff trip time series in
Fig. 5. Although the periodicity patterns in 2020 is very
different from the years before and after COVID-19, the local
and nonlocal auto-correlations in 2019, 2021, 2022, and 2023
demonstrate no remarkable difference. This implies that the
regularity of human mobility after COVID-19 has recovered
to 2019.

7.2 Seasonality Patterns of North America Climate
Variables

Daymet provides monthly climate variables (e.g., mini-
mum/maximum temperature, and precipitation) at a spatial
resolution of 1 km × 1 km [35].1 In this work, we consider
the data spanning from 1980 to 2019, which is in the form
of multidimensional time series. Fig. 7 shows the year-to-
year variations and the temporal variability of the minimum
temperature data of January in the past decade. These
panels reveal seasonal temperature patterns and changes
over the decade, demonstrating regional climate trends.

7.2.1 Robustness of Seasonality Patterns with Different
Spatial Resolutions
Since the original dataset is overly high-resolution, we ag-
gregate the data with different spatial resolutions, including
5 km × 5 km, 10 km × 10 km, and 20 km × 20 km. To
quantify yearly seasonality of these climate time series, we
use the proposed STV-SAR model with a prescribed sparsity
level τ = 3. For instance, on the minimum temperature
dataset, we build the monthly time series across M × N
grids of each decade. The global support set is optimized
as Ω = {1, 11, 12} with the sparsity level τ = 3, and
the coefficients at the index k = 12 are used to quantify
the yearly seasonality of monthly time series. Fig. 8 shows
that the strengths of yearly seasonality with different spatial
resolutions are consistent, in which a relatively higher co-
efficient implies stronger seasonality. In 2010s, both spatial

1. https://daac.ornl.gov/DAYMET

patterns of yearly seasonality highlight some very seasonal
regions such as north areas of Canada, western areas of
USA, and southeastern areas of USA. The temperature of
central regions in North America is extremely less seasonal
than other regions. As shown in Fig. 8, temperature data
of Mexico demonstrate remarkable variability and inconsis-
tency among nearby areas, one can observed detailed spatial
patterns of temperature seasonality from Fig. 9(a).

(a) 5 km× 5 km (b) 20 km× 20 km

Fig. 8: Spatial patterns of the strengths of yearly seasonality
quantified by STV-SAR on the minimum temperature data
in 2010s.

(a) 5 km× 5 km (b) 20 km× 20 km

Fig. 9: Spatial patterns of the strengths of yearly seasonality
on the minimum temperature data in 2010s within Mexico.

To address the computational challenges posed by the
large-scale MIO problem in Eq.(9), we propose a two-stage
optimization scheme aimed at improving scalability in the

https://daac.ornl.gov/DAYMET
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1980s 1990s 2000s 2010s

(a) Minimum temperature

1980s 1990s 2000s 2010s

(b) Maximum temperature

1980s 1990s 2000s 2010s

(c) Precipitation

Fig. 10: Spatial patterns of the strengths of yearly seasonality quantified by STV-SAR on the North America climate data
across the past four decades.

presence of thousands to millions of decision variables.
Table3 summarizes the model’s running times at three spa-
tial resolutions. As the results show, the proposed scheme
enables efficient computation even for datasets with up to
3 million time series, making it well-suited for large-scale,
real-world applications.

TABLE 3: Running times of STV-SAR on the North America
(minimum) temperature dataset with different spatial reso-
lutions. Note that ν denotes the number of time series.

5 km× 5 km 10 km× 10 km 20 km× 20 km

Number ν 3,343,628 816,612 196,720
Cost 48.55 s 11.77 s 2.88 s

7.2.2 Variations of Seasonality Patterns across Four
Decades
Discovering the variations of seasonality patterns allows
one to quantify the evolution of dynamical climate systems.
Fig. 10 shows yearly seasonality of monthly time series data

in North America across past four decades with a spatial
resolution of 10 km × 10 km. Recall that higher coefficients
in the panels indicate regions with stronger yearly season-
ality. We first summarize the findings from the seasonality
patterns of minimum and maximum temperature data. Over
the decades, regions with stronger yearly seasonality are
predominantly located in northern and high-latitude areas
such as Canada and Alaska. The southern regions such as
Mexico seem to be less seasonal in the past four decades
than northern regions, and the variation of yearly seasonal-
ity in Mexico is remarkable among relatively small areas. A
remarkable expansion of highly seasonal regions occurs in
2000s compared to earlier decades, demonstrating an inten-
sification of seasonal temperature variations. Such kind of
expansion of regions with a strong yearly seasonality high-
lights area where temperature-driven seasonal cycles are
more predictable. In 2010s, two most remarkable regions are
highlighted, i.e., north territory of Canada (e.g., Nunavut)
and western states of USA. While the seasonality patterns
in 1980s and 1990s are quite consistent, the changing sea-
sonality patterns in 2000s and 2010s are truly remarkable.
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(a) From 2000 to 2004 (b) From 2005 to 2009 (c) From 2010 to 2014 (d) From 2015 to 2019

Fig. 11: Spatial patterns of the strengths of yearly seasonality quantified by STV-SAR on the minimum temperature data
with a 5-year phase (i.e., Tγ = 60 months).

The shifts in seasonality patterns in the past four decades
provide evidence of changing climate dynamics in North
America with implications for ecological systems.

Then, we compare the seasonality patterns among dif-
ferent climate variables in Fig. 10. The yearly seasonality
patterns of precipitation demonstrate remarkable variations
in the past four decades even among nearby small regions.
The seasonality patterns of minimum and maximum tem-
perature in 1980s and 1990s are quite consistent. However,
the seasonality pattern of the minimum temperature in
2000s shows more seasonal regions than the maximum
temperature. In 2010s, the maximum temperature of Mexico
is less seasonal than the minimum temperature. the max-
imum temperature of western regions of USA and central
regions of North America is more seasonal than the mini-
mum temperature. In contrast, the maximum temperature
of northern regions of Canada is less seasonal than the
minimum temperature.

7.2.3 Sensitivity Analysis of Phase Segmentation
As mentioned above, we discover the yearly seasonality
from monthly climate variable time series with each phase
corresponding to each decade. In what follows, we evaluate
the model with a 5-year phase on the minimum temperature
data from 2000 to 2019. Fig. 11(a) shows the seasonality
pattern that is more consistent with Fig. 10(a) for 1990s.
Fig. 11(b) depicts the seasonality pattern from 2005 to 2009
that is dominant in 2000s, see Fig. 10(a). Observing the
seasonality pattern in Fig. 11(c), more regions around the
central part of North America show less seasonal minimum
temperature from 2010 to 2014, comparing with the sea-
sonality pattern in the next 5 years as shown in Fig. 11(d).
Notably, as the minimum temperature of Mexico from 2015
to 2019 is more seasonal than the periods from 2000 to 2014,
it is difficult to see such an evidence from Fig. 10.

7.3 Seasonality Patterns of Sea Surface Temperature
In this work, we consider the sea surface temperature
dataset that covers monthly averages of temperatures on
the spatial resolution of a (0.25 degree latitude, 0.25 degree
longitude)-grid, and there are 720 × 1440 global grids (i.e.,
1,036,800 cells) in total.2 The dataset spans a past four-
decade period from January 1982 to December 2019. Fig. 12

2. https://www.ncei.noaa.gov/data/sea-surface-temperature-
optimum-interpolation/v2.1/access/avhrr/
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Fig. 12: Average values of the monthly sea surface tempera-
ture data from January 1982 to December 2019. The average
temperature values in 1980s, 1990s, 2000s, and 2010s are
13.46◦C, 13.54◦C, 13.69◦C, and 13.83◦C, respectively. The
blue and red curves correspond to yearly and monthly
average temperature values, respectively.

shows both monthly and yearly temperature trends of the
global sea surface temperature, demonstrating a gradual
warming trend as evident from the increase in yearly av-
erage temperatures. These results highlight the increasing
influence of climate change on ocean temperatures. The
higher fluctuations in the monthly time series reveal sea-
sonal variations. Thus, quantifying yearly seasonality is
important for measuring the climate change and under-
standing the dynamical system because stronger seasonality
of temperatures implies less variations in the time series.

In the experiment, we first set the order and the sparse
level as d = 12 and τ = 3, respectively. We examine
the STV-SAR model on the sea surface temperature data
of different decades independently and compare the coeffi-
cients of yearly seasonality of temperatures. Fig. 13 explores
the yearly periodicity of sea surface temperature through
a spatial representation of the coefficients associated with
yearly seasonality. These results show the intensity of yearly
sea surface temperature variations, with higher coefficients
indicating stronger periodicity. High values, marked in red,
are concentrated in regions close to Eastern/Middle Asia,
North America, Europe, and North Africa, where seasonal
temperature changes are more pronounced. In contrast, the
equatorial regions such as the area of El Niño exhibit lower
coefficients, demonstrating less seasonal and predictable sea
surface temperature. Although there is a consistent pattern
of strong periodicity across the decades, the minor shifts
indicating changes in oceanic dynamics can also be identi-
fied. For instance, as shown in Fig. 14, these regions close to
Canada have temperature variations and seasonality shift in

https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/
https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/
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(a) 1980s (b) 1990s

(c) 2000s (d) 2010s

Fig. 13: Spatial patterns of the strengths of yearly seasonality quantified by STV-SAR on the sea surface temperature data
in the past four decades.

(a) 1980s (b) 1990s (c) 2010s

Fig. 14: Spatial patterns of the strengths of yearly seasonality on the sea surface temperature data with highlighted areas
around Canada.

the past three decades. One can see from the coefficients that
the temperature of Arctic Ocean became less seasonal in the
past two decades, potentially influenced by factors such as
oceanic circulation changes, global warming, or variability
in atmospheric patterns.

8 CONCLUSION

In this work, we provide a unified SAR framework for
quantifying time series periodicity in real-world spatiotem-
poral systems. We advance the development of TV-SAR and
STV-SAR models from an interpretable machine learning
perspective by incorporating spatially- and time-varying
sparsity constraints. To address the MIO problems, we
present efficient and scalable algorithmic implementation
by designing a DVP strategy and a two-stage optimization
scheme for TV-SAR and STV-SAR, respectively. Our findings
discovered by the proposed models from ridesharing trip
data and climate variable data empirically demonstrate the

interpretable components related to periodicity and sea-
sonality of time series. The spatial and temporal dynamics
and patterns revealed by time series periodicity also justify
remarkable real-world implications of periodicity quantifi-
cation to spatiotemporal systems.

APPENDIX A
PROOF OF THEOREM 1
Proof. Let Fτ = {w ∈ Rd : ∥w∥0 ≤ τ} be the class of τ -
sparse vectors. Since ŵ minimizes the residual error over
Fτ , we have:

∥x̃−Aŵ∥22 ≤ ∥x̃−Aw⋆∥22.
Substituting x̃ = Aw⋆ + ϵ, this becomes:

∥A(ŵ −w⋆)− ϵ∥22 ≤ ∥ϵ∥22.
Expanding the left-hand side:

∥A(ŵ −w⋆)∥22 − 2⟨ϵ,A(ŵ −w⋆)⟩+ ∥ϵ∥22 ≤ ∥ϵ∥22.
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Cancelling ∥ϵ∥22 from both sides:

∥A(ŵ −w⋆)∥22 ≤ 2⟨ϵ,A(ŵ −w⋆)⟩.
Now take expectations on both sides:

E
[
∥A(ŵ −w⋆)∥22

]
≤ 2 · E

[
sup

w∈Fτ

⟨ϵ,A(w −w⋆)⟩
]
.

Let Sτ = {A(w−w⋆) : w ∈ Fτ}. We now apply a Gaussian
complexity bound:

E

[
sup
v∈Sτ

⟨ϵ,v⟩
]
≤ σ ·

√
2 log (|Fτ |) · sup

v∈Sτ

∥v∥2.

The number of τ -sparse supports is bounded by:

|Fτ | ≤
(
d

τ

)
≤
(
ed

τ

)τ

.

Taking logarithms:

log |Fτ | ≤ τ log

(
ed

τ

)
≤ τ

(
log

(
d

τ

)
+ 1

)
.

Putting everything together:

E
[
∥A(ŵ −w⋆)∥22

]
≤ C · σ2 · τ

(
log

(
d

τ

)
+ 1

)
,

for some universal constant C . Finally, divide both sides by
T − d to normalize by the number of samples:

E
[

1

T − d
∥A(ŵ −w⋆)∥22

]
≤ C ·σ2 · τ

T − d

(
log

(
d

τ

)
+ 1

)
.
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