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Movement speed data from urban road networks, computed from ridesharing vehicles or taxi trajectories, is

often high-dimensional, sparse, and nonstationary (e.g., exhibiting seasonality). These characteristics pose

challenges for developing scalable and efficient data-driven solutions for traffic flow estimation and forecast-

ing using machine learning techniques. To address these challenges, we propose a Nonstationary Temporal

Matrix Factorization (NoTMF) model that leverages matrix factorization to project high-dimensional and

sparse movement speed data into low-dimensional latent spaces. This results in a concise formula with

the multiplication between spatial and temporal factor matrices. To characterize the temporal correlations,

NoTMF takes a latent equation on the seasonal differenced temporal factors using higher-order vector autore-

gression (VAR). This approach not only preserves the low-rank structure of sparse movement speed data

but also maintains consistent temporal dynamics, including seasonality information. The learning process

for NoTMF involves optimizing the spatial and temporal factor matrices along with a collection of VAR

coefficient matrices. To solve this efficiently, we introduce an alternating minimization framework, which

tackles a challenging procedure of estimating the temporal factor matrix using conjugate gradient method,

as the subproblem involves both partially observed matrix factorization and seasonal differenced VAR. To

evaluate the forecasting performance of NoTMF, we conduct extensive experiments on Uber movement speed

datasets, which are estimated from ridesharing vehicle trajectories. These datasets contain a large proportion

of missing values due to insufficient ridesharing vehicles on the urban road network. Despite the presence

of missing data, NoTMF demonstrates superior forecasting accuracy and effectiveness compared to baseline

models. Moreover, as the seasonality of movement speed data is of great concern, the experiment results

highlight the significance of addressing the nonstationarity of movement speed data.
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1. Introduction

In the field of urban transportation networks, the rise of crowdsourced data, collected

through fixed sensing detectors (e.g., loop detectors, radar detectors, and cameras) and

mobile sensors (e.g., floating cars equipped with the Global Positioning System (GPS)

devices), has revolutionized the monitoring of urban traffic states such as movement speeds

(Treiber and Kesting 2013, Zheng 2015). Mobile sensor data, including human mobility

trajectories, has gained great attention over the past decades due to the widespread utiliza-

tion of mobile devices. These data provide unprecedented insights into analyzing human

mobility behaviors (e.g., movement from place A to place B with a sequence of positions

forming a trajectory) and enable the computation of movement speeds across urban road

networks. For instance, trajectory data from ridesharing vehicles not only reveal the traffic

states of urban road networks but also serve as pivotal components in city-wide traffic state

estimation tasks. However, urban movement speed data derived from ridesharing vehicles

are inherently sparse, capturing only a small fraction of the total vehicular trajectories

and leading to the issues of missing values. Thus, these imperfect data pose unprecedented

methodological and practical challenges for accurate movement speed estimation and fore-

casting.

Using machine learning algorithms to estimate urban traffic flow from ridesharing tra-

jectories is technically feasible but complex. The main challenge lies in leveraging partial

observed movement speeds to accurately infer unobserved speeds. This challenge is central

to the data-driven task of traffic flow imputation, which is critical for effective movement

speed estimation (Chen and Sun 2022). An analysis of the Uber movement speed data1

highlights significance differences in data completeness between peak and off-peak hours,

with higher missing rates of movement speeds during off-peak hours. Additionally, the data

reveals daily seasonal patterns in missing values. These findings align with our understand-

ing of urban traffic dynamics and emphasize the need to address data biases to improve

the accuracy of urban traffic forecasting.

1 Available till October 2023 at https://movement.uber.com/.

https://movement.uber.com/


Chen et al.: Forecasting Sparse Movement Speed of Urban Road Networks with NoTMF
Article submitted to Transportation Science; manuscript no. TS-2024-0629 3

This study aims to advance the forecasting of sparse movement speeds within urban

transportation networks by relying on several key assumptions: (i) Partially observed move-

ment speed data contains informative low-dimensional spatial and temporal patterns; (ii)

Movement speed data exhibits strong temporal dynamics and trends, which can be effec-

tively modeled using linear time-invariant systems, such as vector autoregression (VAR);

(iii) Addressing the nonstationarity of movement speed data through seasonal differencing,

either directly in the data space or indirectly in latent spaces, is crucial for mitigating

biases inherent in urban movement speed data. It is worth noting that matrix factoriza-

tion is invariant to the permutation of rows and columns, which complicates the efforts

to mitigate data bias. In the proposed NoTMF model, using seasonal differenced VAR is

meaningful for characterizing traffic flow dynamics, such as global and local time series

trends in the latent space, mitigating data biases (e.g., columns of data with varying miss-

ing rates, as shown in Figure 3), and reinforcing matrix factorization for more accurate

imputation and prediction.

To summarize, the contributions of this study are threefold:

• We propose the NoTMF model, which integrates higher-order VAR processes with

differencing operations into the classical low-rank matrix factorization framework. This

approach enhances the model’s ability to capture low-dimensional temporal dynamics

within high-dimensional and sparse spatiotemporal datasets.

• We design an alternating minimization algorithm for efficiently solving the optimiza-

tion problem in the NoTMF model. The subproblem involving the low-dimensional tem-

poral factor matrix—a generalized Sylvester equation that incorporates both partially

observed matrix factorization and seasonal differenced VAR—is solved using the conjugate

gradient method, which approximates the least squares solution of linear equations with

minimal iterations.

• We validate the NoTMF model’s ability to forecast sparse movement speeds using

two real-world datasets: the Uber movement speed data from New York City (NYC) and

Seattle, USA, both of which encompass large numbers of road segments and exhibit strong

seasonality. The experiments demonstrate the NoTMF model’s superior performance in

handling sparse data compared to existing state-of-the-art forecasting methods. In the

meantime, the results highlight the importance of nonstationarity modeling with seasonal

differenced VAR.
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As we aim to formulate the sparse movement speed forecasting problem using data-driven

machine learning methods, Table 1 provides a summary of basic symbols and notations

used in this study. Here, R represents the set of real numbers, while Z+ denotes the set of

positive integers.

Table 1 Summary of the basic notation.

Notation Description

x∈R Scalar

x∈Rn Vector of length n

X ∈Rm×n Matrix of size m×n

∂f
∂x
, ∂f

∂X
Partial derivatives of f with respect to vector x and matrix X, respectively

δ ∈Z+ Forecasting time horizon

R ∈Z+ Rank of matrix factorization

[i] Positive integer set {1,2, . . . , i}, i∈Z+

[0, i] Nonnegative integer set {0,1,2, . . . , i}, i∈Z+

[i, j] Positive integer set {i, i+1, . . . , j}, i, j ∈Z+, i < j

∥ · ∥2 ℓ2-norm of vector

∥ · ∥F Frobenius norm of matrix

⊗ Kronecker product, see Definition 2

vec(·) Vectorization operator

2. Literature Review
2.1. Opportunities and Challenges of Using Ridesharing Vehicle Data in Traffic

State Estimation

In urban transportation networks, the utilization of fixed sensing detectors such as loop

detectors, radar detectors, and cameras has been pivotal in monitoring traffic flow. These

detectors are strategically placed to capture traffic data, collecting key parameters such

as traffic density, flow, and speed. The effectiveness of these sensors in providing real-

time traffic information has been well-documented in several studies (Jain et al. 2019,

Guerrero-Ibáñez et al. 2018). However, the advent of mobile sensor technology, including

smartphones and vehicular sensors, has shifted the source of traffic data, offering a more

dynamic and reliable approach to data collection (Janecek et al. 2015).
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Ridesharing vehicle data in the form of trajectories has been increasingly utilized to

reveal traffic states across cities (Zheng et al. 2018), providing valuable insights into human

mobility patterns. These patterns are not only help in understanding the movement from

one position to another but also extend to computing movement speeds within urban road

networks. Despite its potential, the reliance on mobile sensor data presents challenges, par-

ticularly concerning data sparsity and insufficient sampling. Ridesharing vehicles represent

only a small fraction of the total traffic, resulting in datasets that are far from comprehen-

sive. This sparsity is compounded by issues of data corruption and missing values, making

it difficult to obtain accurate and reliable traffic states. As a result, there has been grow-

ing interest in developing methodologies capable of forecasting movement speeds despite

these limitations. Substantial progress has been made in mitigating the effects of imperfect

and sparse data, aiming to improve the accuracy and reliability of traffic state estimations

derived from ridesharing vehicle data (Chen and Sun 2022).

2.2. Machine Learning Methods

Matrix and tensor factorization techniques are widely used to explore traffic flow data. For

example, Yu et al. (2016) establish a temporal regularized matrix factorization (TRMF)

framework for forecasting high-dimensional and sparse traffic time series in latent spaces,

while Chen and Sun (2022) develop a Bayesian temporal factorization for forecasting matrix

and tensor time series data in the presence of missing values. The classical time series fore-

casting problem has been widely studied with a variety of statistics and machine learning

frameworks over the past few decades. In this study, we aim to leverage matrix factoriza-

tion and VAR to address the traffic flow forecasting problem with high-dimensional and

sparse movement data.

In practice, on small-scale traffic time series datasets, VAR is a classical and efficient

solution for traffic flow forecasting. However, when dealing with high-dimensional data, the

traditional VAR model severely suffers from the over-parameterization issue (Velu et al.

1986, Velu and Reinsel 1998, Basu and Michailidis 2015, Wang et al. 2021, Cheng et al.

2022), where the number of parameters vastly exceeds the number of observed data sam-

ples. In such cases, incorporating prior knowledge and assumptions about the parameter

space, such as low-rank property and sparsity of the coefficient matrices, becomes essential

for seeking an efficient learning process. For example, in multivariate reduced-rank regres-

sion (Velu et al. 1986, Velu and Reinsel 1998), the coefficient matrices are assumed to be
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low-rank, with variants of this method including high-dimensional VAR that use matrix

factorization (e.g., (Carriero et al. 2016, Koop et al. 2019)) and tensor factorization (e.g.,

(Wang et al. 2021)). Imposing sparsity on the coefficients is another potential solution, such

as using ℓ1-norm regularization (Basu and Michailidis 2015, Han et al. 2015) or combining

nuclear norm and sparsity-induced norms (Basu et al. 2019).

On incomplete time series data, a central challenge is to effectively learn temporal

dynamics from partially observed data. A naive solution is to first impute the missing data

and then make predictions on the estimated data points (e.g., (Che et al. 2018)). How-

ever, such methods may produce substantial estimation biases due to the separation of

imputation and forecasting, not to mention that making accurate imputation itself is not

a trivial task (Chen and Sun 2022). For high-dimensional datasets with missing values, the

low-rank assumption has been demonstrated to be very effective for imputation (Yu et al.

2016, Chen and Sun 2022). In the literature, matrix and tensor factorization methods have

been used to model high-dimensional and incomplete time series (Xiong et al. 2010, Yu

et al. 2016, Takeuchi et al. 2017, Chen and Sun 2022). The underlying assumption in these

models is that the incomplete high-dimensional dataset can be well characterized by a few

latent factors—analogous to the state space representation (Stock and Watson 2016) in

dynamic factor models—which evolve over time following VAR processes. However, mod-

eling the incomplete data in a matrix factorization framework is more computationally

efficient due to the simplified isotropic covariance structure on errors (Yu et al. 2016).

In addition to the high-dimensionality and sparsity issues, nonstationarity is also a

unique feature of real-world time series data. Recall that the properties of stationary time

series do not depend on time. Most existing literature simply assumes that the data and

the underlying latent temporal factors are stationary when applying VAR for modeling

temporal dynamics (Yu et al. 2016, Takeuchi et al. 2017, Gultekin and Paisley 2018, Chen

and Sun 2022). Only a few matrix/tensor factorization-based time series models address

the nonstationarity issue by modeling the periodicity (Dunlavy et al. 2011, Yu et al. 2016,

Kawabata et al. 2021). As mentioned by Kawabata et al. (2021), to overcome the limitation

of matrix factorization for seasonal modeling, one classical data augmentation approach for

temporal modeling with periodic patterns is converting matrix factorization into tensor fac-

torization according to season information. In the temporal regularized matrix factorization
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(Yu et al. 2016), seasonality is considered by using a well-designed lag set for the autore-

gressive model. Shifting seasonal matrix factorization proposed by Kawabata et al. (2021)

can learn multiple seasonal patterns/regimes from multi-viewed data, i.e., matrix-variate

time series. These studies demonstrate the effectiveness of matrix and tensor factorization

techniques for time series data with diverse periodic patterns. Nevertheless, to the best of

our knowledge, introducing proper differencing operations—a simple yet effective solution

to address the nonstationarity issue—has been overlooked by existing studies.

2.3. Research Gaps

By definition, one can represent the movement speed data collected from N road segments

and T consecutive time steps (e.g., with an hourly time resolution) as the matrix Y ∈RN×T

whose movement speeds at time t are written as yt ∈ RN . The goal of movement speed

forecasting is to estimate the future movement speeds Ŷ ∈RN×δ for the next δ time steps

ahead. A classical and widely used approach for multivariate time series forecasting is the

VAR process (Lütkepohl 2013):

yt =
∑

k∈[d]
Akyt−k + ϵt, ∀t∈ [d+1, T ], (1)

where d∈Z+ represents the order of VAR, Ak ∈RN×N , k ∈ [d] are the coefficient matrices,

and ϵt ∈ RN is the zero-mean Gaussian noise vector. With this formula, the coefficient

matrices can capture coevolution movement patterns over different road segments. Typ-

ically, the standard VAR is well-suited to “short-fat” data with N ≪ T . However, the

high-dimensionality has posed methodological challenges to the implementation of VAR

due to the quadratically growing parameter space (Verleysen and François 2005, Basu et al.

2019, Wang et al. 2021). On the “tall-skinny” data with N ≫ T , it gives rise to the over-

parameterization issue (Velu et al. 1986, Velu and Reinsel 1998, Basu and Michailidis 2015)

with dN 2 parameters in (1), vastly exceeding NT observations. Regarding the sparsity of

urban movement speed data, it prevents us from using VAR given that the model usually

requires complete observations for parameter estimation.

To simultaneously address the high-dimensionality and sparsity issues, recent advances

have integrated time series autoregression into the low-rank matrix/tensor factorization

models (Xiong et al. 2010, Yu et al. 2016, Gultekin and Paisley 2018, Chen and Sun
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2022), constructing a unified framework such as TMF. The TMF assumes that the move-

ment speed data is dominated by a few “important” patterns (i.e., characterized by low-

dimensional latent factors) and the temporal factor matrix captures the coevolution pat-

terns of N movement speed time series. In the literature, substantial progress has been

made in verifying the effectiveness of TMF on many real-world time series data in the

presence of missing values (Yu et al. 2016, Gultekin and Paisley 2018, Chen and Sun 2022).

Nevertheless, some methodological challenges remain in learning the temporal dependen-

cies. It is worth noting that the default TMF does not impose any constraints on the

stationarity of latent temporal factors. This becomes problematic when modeling move-

ment speed data with strong trends and seasonality. In this case, the estimated coefficient

matrices are no longer effective because we would expect the underlying dynamics of tem-

poral factors to be time-dependent and thus nonstationary. If the movement speed data

is fully observed, a simple solution is to first perform certain differencing operations such

as first-order differencing and seasonal differencing, and then use the differenced data for

parameter estimation. However, this simple solution becomes inaccessible when the data

is sparse. To this end, we intend to formulate the movement speed forecasting problem

with NoTMF and present an efficient solution algorithm with alternating minimization

and conjugate gradient methods.

3. Nonstationary Temporal Matrix Factorization
3.1. Preliminaries: Matrix Factorization

The movement speed data in urban road networks typically demonstrates certain low-

dimensional spatial and temporal patterns. For instance, as shown in Figure 1, the sparse

movement speed data Y ∈ RN×T can be approximated by the multiplication between a

spatial factor matrix W ∈RR×N and a temporal factor matrix X ∈RR×T , i.e., Y ≈W⊤X

with a prescribed rank R ∈ Z+ <min{N,T}. In practice, the observed data Y is usually

incomplete, which contains some missing/unobserved values in the data. Here we define

PΩ(·) as the orthogonal projection supported on the observed index set Ω to indicate the

observed entries. For instance, on the data matrix Y with observed index set Ω, we have

the following definition for the orthogonal projection:

[PΩ(Y )]n,t =




yn,t, if (n, t)∈Ω,

0, otherwise,
(2)
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where n∈ [N ] and t∈ [T ]. Notably, [·]n,t denotes the (n, t)-th entry of a matrix. The entries

of Y filled with zeros imply the unobserved values, i.e., (n, t) /∈Ω. Such a definition allows

one to formulate the matrix factorization on the partially observed movement speed data.

As a consequence, the matrix factorization can be formulated as PΩ(Y )≈PΩ(W
⊤X) or

element-wise yn,t ≈w⊤
nxt, ∀n ∈ [N ], t ∈ [T ] in which wn,xt ∈RR are the n-th and the t-th

columns of the factor matrices W and X, respectively. To achieve such approximation,

one key problem is specifying the latent factor matrices, so that the partially specified

data matrix Y matches W⊤X as closely as possible (Koren et al. 2009). Formally, the

optimization problem of matrix factorization is given by

min
W ,X

1

2

∥∥PΩ(Y −W⊤X)
∥∥2

F
+
ρ

2
(∥W ∥2F + ∥X∥2F ), (3)

or on the observed entries of data matrix Y , we have

min
{wn}n∈[N ],{xt}t∈[T ]

1

2

∑

(n,t)∈Ω
(yn,t−w⊤

nxt)
2+

ρ

2

(∑

n∈[N ]

∥wn∥22+
∑

t∈[T ]

∥xt∥22
)
, (4)

with an objective function defined by the error of matrix factorization on the set Ω and the

regularization terms (weighted by the hyperparameter ρ) corresponding to factor matri-

ces W and X. Alternatively, the column vector yt ∈ RN , ∀t ∈ [T ] of the data Y can be

approximated by W⊤xt. To characterize the temporal dynamics of urban movement speed,

we next introduce the NoTMF model which integrates the seasonal differenced VAR into

the matrix factorization framework. By doing so, NoTMF can build complicated temporal

correlations when forecasting high-dimensional and sparse movement speeds of urban road

networks.

? ?

?
?

? ??

?
?

Y ∈ RN×T
︸ ︷︷ ︸

≈

W> ∈ RN×R
︸ ︷︷ ︸

×

t− 3 t− 2 t− 1 t t+ 1 t+ 2 t+ 3 time step

· · ·
xt−2 xt−1 xt xt+1 xt+2

· · ·

︸
︷︷

︸

R

Figure 1 Illustration of TMF on sparse movement speed data where the symbols “?” represent the unobserved

values in the data. TMF characterizes spatiotemporal patterns of the data Y ∈ RN×T as a spatial

factor matrix W ∈RR×N and a temporal factor matrix X ∈RR×N in which the temporal factor matrix

is indeed a multivariate time series.
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3.2. Optimization Problem of NoTMF

TMF that integrated temporal modeling techniques such as univariate autoregression and

VAR has become extremely useful for multivariate time series forecasting in the presence

of missing values (Yu et al. 2016, Gultekin and Paisley 2018, Chen and Sun 2022). The

essential idea of the TMF models is that low-rank matrix factorization can discover low-

dimensional temporal patterns from partially observed time series, while autoregression

can reinforce the temporal correlations in the modeling process and capture time-evolving

coefficients. To this end, we first characterize time series correlations and patterns from

sparse time series data and then make efficient predictions for future data points. At the

same time, to address the real-world sparse prediction problem, the design of TMF stems

from some classical machine learning frameworks such as online learning and dictionary

learning.

TMF is well-suited to handling the following emerging issues in real-world movement

speed data: 1) High-dimensionality: Urban road networks such as transportation systems

in NYC usually have thousands of road segments, i.e., large N ; 2) Sparsity: Road-level

movement speed data are often sparse, which means that only a small portion of data are

observed due to the limited penetration of float cars (e.g., taxi and ridesharing vehicle).

On Uber movement speed datasets, we only have access to a small portion of movement

speed values even in an hourly time resolution due to insufficient sampling and the limited

penetration of ridesharing vehicles.

Recall that an essential assumption of VAR is that the modeled time series is station-

ary. However, the periodicity/seasonality in real-world movement speed data Y will be

characterized by the latent temporal factor matrix X, and such nonstationarity property

contradicts the stationary assumption in VAR. Furthermore, the estimated coefficients in

the VAR process would become sub-optimal and even produce biased estimations for the

movement speed. To address this issue, we expect the temporal dynamics to be time-

dependent and introduce seasonal differencing to stationarize traffic time series dynamics

in latent spaces. For any sparse movement speed data Y ∈ RN×T collected from N road

segments and T (hourly) time steps, we formulate the NoTMF model as the following

optimization problem:

min
W ,X,{Ak}k∈[d]

1

2

∥∥PΩ(Y −W⊤X)
∥∥2

F
+
γ

2

∑

t∈[d+m+1,T ]

∥∥∥ẋm
t −

∑

k∈[d]
Akẋ

m
t−k

∥∥∥
2

2
+
ρ

2
(∥W ∥2F + ∥X∥2F ),

(5)
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where the season is set as m∈Z+ and we let

ẋm
t ≜xt−xt−m, ∀t∈ [m+1, T ], (6)

be the result of the season-m differencing on the columns of the temporal factor matrix

X. On the seasonal different temporal factors, Ak ∈RR×R, k ∈ [d] represent the coefficient

matrices of dth-order VAR for characterizing the temporal dynamics of X. The errors of

seasonal differenced VAR are formulated as a regularization term, leading to the design

of temporal loss. Hyperparameters {γ, ρ} are the weight parameters for the regularization

terms.

In practice, the objective function in (5) has three components, including the loss func-

tion of matrix factorization, the temporal loss of seasonal differenced VAR, and the regu-

larization terms. The matrix factorization can help recover missing values in the matrix Y

through W⊤X, but the data biases (e.g., the columns with different amounts of observed

entries) possibly mislead the loss function behaviors. Thus, the temporal loss is of great

significance for mitigating data biases of urban movement speeds. In theory, our NoTMF

takes the form of linear time-invariant systems and has an observation equation and a

latent space equation, namely,




PΩt(yt) =PΩt(W
⊤xt)+ ϵt, (Observation equation)

ẋm
t =

∑

k∈[d]
Akẋ

m
t−k +ηt, (Latent space equation)

(7)

where Ωt is the observed index set of the high-dimensional movement speeds yt ∈ RN at

time t. The vectors ϵt ∈ RN and ηt ∈ RR are zero-mean Gaussian noises. As can be seen,

the observation equation describes the relation between the partially observed variables

yt, ∀t∈ [T ] and spatial/temporal factors with matrix factorization, while the latent space

equation reflects the dynamics of the unobserved factor variables xt, ∀t∈ [T ] with VAR. A

phenomenon related to (7) is the existence of “representative” temporal dynamics of urban

traffic flow which comes from thousands of road segments. Despite the sparse learning

process in NoTMF, the fundamental idea of NoTMF can be easily connected with some

classical methods such as dynamic factor model in macroeconomic modeling (Forni et al.

2000, Stock and Watson 2016), state space model in system identification and control

(Hangos et al. 2006), and recurrent neural networks in deep learning (LeCun et al. 2015,

Prince 2023).
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3.3. Matrix Representation: Temporal Operator Matrices

As mentioned above, the optimization problem of NoTMF has a matrix factorization com-

ponent in the form of matrices and a VAR component in the form of vectors. To get a

unified solution to the optimization problem, we rewrite the vector-form temporal loss in

the form of matrices by utilizing the temporal operator matrices as described in Defini-

tion 1.

Definition 1 (Temporal Operator Matrices). According to the expression of

dth-order VAR on the latent temporal factors {xt}t∈[T ], the temporal operator matrices

{Ψk}k∈[0,d] associated with the season m∈Z+ are defined as

Ψk ≜
[
0(T−d−m)×(d−k) −IT−d−m 0(T−d−m)×(k+m)

]

+
[
0(T−d−m)×(d+m−k) IT−d−m 0(T−d−m)×k

]
, ∀k ∈ [0, d],

(8)

where 0m×n denotes the m-by-n matrix of zeros, and Im denotes the m-by-m identity

matrix. In (8), the temporal operator matrix Ψk ∈ R(T−d−m)×T is an augmented matrix,

i.e., the combination of two matrices. In particular, the first matrix has zeros as the entries

in the first d− k columns and the last k+m columns, while the second matrix has zeros

as the entries in the first d+m− k columns and the last k columns.

Remark 1. Since these temporal operator matrices {Ψk}k∈[0,d] are a sequence of sparse

matrices and only have 2(T − d−m) nonnegative entries, utilizing such sparse structure

allows one to reduce the memory consumption and develop efficient algorithms in the case

of a very long time series, i.e., large T .

As a result, one can use the multiplication between the temporal factor matrix X and

the temporal operator matrices to reformulate the temporal loss. First, the season-m dif-
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ferenced temporal factors can be written in the form of matrices:

XΨ⊤
0 =




| |
xd+m+1 −xd+1 · · · xT −xT−m

| |


 ,

XΨ⊤
1 =




| |
xd+m −xd · · · xT−1−xT−m−1

| |


 ,

...

XΨ⊤
d =




| |
xm+1 −x1 · · · xT−d −xT−m−d

| |


 ,

(9)

of size R× (T − d−m). Then, one can eliminate the sum over all t∈ [d+m+1, T ] in the

temporal loss and find an equivalent expression, namely,

∑

t∈[d+m+1,T ]

∥∥∥ẋm
t −

∑

k∈[d]
Akẋ

m
t−k

∥∥∥
2

2
=
∥∥∥XΨ⊤

0 −
∑

k∈[d]
AkXΨ⊤

k

∥∥∥
2

F
. (10)

By doing so, the matrix-form temporal loss can facilitate the matrix computations. Thus,

the optimization problem of NoTMF in (5) now becomes

min
W ,X,{Ak}k∈[d]

1

2

∥∥PΩ(Y −W⊤X)
∥∥2

F
+
γ

2

∥∥∥XΨ⊤
0 −

∑

k∈[d]
AkXΨ⊤

k

∥∥∥
2

F
+
ρ

2
(∥W ∥2F + ∥X∥2F ),

(11)

where the latent factor matrices {W ,X} and the coefficient matrices {Ak}k∈[d] are required
to estimate. If one obtains both spatial factor matrix W and temporal factor matrix X,

then the unobserved entries in the data Y can be reconstructed accordingly. In particular,

the VAR process can reinforce the temporal correlations among xt, ∀t ∈ [T ] and capture

temporal dynamics, while the matrix factorization without temporal modeling is invariant

to the permutation of column vectors {xt}t∈[T ] in the temporal factor matrix X. We next

introduce an alternating minimization framework to solve the optimization problem of

NoTMF in (11), in which we denote the objective function by f .

3.4. Spatial Factor Matrix Estimation

The spatial factor matrix W represents low-dimensional patterns of the sparse movement

speed data Y . In the alternating minimization framework, estimating the spatial factor
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matrix W requires one to fix the temporal factor matrix X and the coefficient matrices

{Ak}k∈[d] as known variables. First of all, we write down the partial derivative of f with

respect to W as
∂f

∂W
=−XP⊤

Ω (Y −W⊤X)+ ρW . (12)

Let ∂f
∂W

= 0, then we have the following generalized Sylvester equation:

XP⊤
Ω (W

⊤X)+ ρW =XP⊤
Ω (Y ). (13)

In fact, (13) is a generalized system of linear equations, and it is not difficult to obtain

the closed-form solution. A natural solution could be pursued through the least squares of

each column vector of W (Koren et al. 2009):

wn =
( ∑

t:(n,t)∈Ω
xtx

⊤
t + ρIR

)−1( ∑

t:(n,t)∈Ω
xtyn,t

)
, ∀n∈ [N ], (14)

where the notation
∑

t:(n,t)∈Ω
implies the sum over all t in the observed index set Ω with the

fixed index n.

3.5. Temporal Factor Matrix Estimation: Factorization Plus Autoregression

The temporal factor matrix X represents low-dimensional dynamic patterns of the sparse

movement speed data Y . We assume a seasonal differencing on the nonstationary temporal

factor matrix and assert that such a VAR process can reinforce the temporal modeling

capability of matrix factorization on sparse movement speed data. However, the challenge

would arise because VAR on the seasonal differenced temporal factor matrix complicates

the optimization problem. With respect to the temporal factor matrix X, the partial

derivative of f can be written as

∂f

∂X
=−WPΩ(Y −W⊤X)+ γ

∑

k∈[0,d]
A⊤

k

( ∑

h∈[0,d]
AhXΨ⊤

h

)
Ψk + ρX, (15)

where A0 ≜−IR is introduced as a negative identity matrix.

Let ∂f
∂X

= 0, then we have a generalized Sylvester equation with multiple terms:

WPΩ(W
⊤X)+ γ

∑

k∈[0,d]
A⊤

k

( ∑

h∈[0,d]
AhXΨ⊤

h

)
Ψk + ρX =WPΩ(Y ), (16)

which involves d2 + 2 terms in the left-hand side. Both orthogonal projection in matrix

factorization and VAR on the temporal factor matrix complicate this matrix equation.
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If we convert the formula into a generalized system of linear equations, then finding the

closed-form solution to (16) would take O(R3T 3) time, infeasible as the dimension RT is

large, see details as shown in Lemma 2.

Lemma 1. Suppose A∈Rm×n, X ∈Rn×p, and B ∈Rp×q be three matrices commensurate

from multiplication in that order, then it always hold that

vec(AXB) = (B⊤⊗A) vec(X), (17)

where vec(·) denotes the vectorization operator, and ⊗ denotes the Kronecker product (see

Definition 2). The aforementioned formula is also known as the mixed-product property of

Kronecker product (Golub and Van Loan 2013).

Definition 2 (Kronecker Product (Golub and Van Loan 2013)). For any

matrices A∈Rm×n and B ∈Rp×q, the Kronecker product between A and B is given by

A⊗B =




a11B a12B · · · a1nB
a21B a22B · · · a2nB
...

...
. . .

...

am1B am2B · · · amnB



∈R(mp)×(nq), (18)

where the resulting matrix is of size (mp)× (nq) with m×n blocks, and each block is the

multiplication between the matrix B and the entry of A.

Lemma 2. Given any partially observed matrix Y ∈ RN×T with the observed index set

Ω, the closed-form solution to (16) in the form of vectorized X is given by

vec(X) =
(
S+ γ

∑

k∈[0,d]

∑

h∈[0,d]
(Ψk ⊗Ak)

⊤(Ψh⊗Ah)+ ρIRT

)−1

vec(WPΩ(Y )), (19)

where the block matrix

S ≜




S1 0 · · · 0

0 S2 · · · 0
...

...
. . .

...

0 0 · · · ST



∈R(RT )×(RT ),

has a sequence of blocks on the diagonal such that

St ≜
∑

n:(n,t)∈Ω
wnw

⊤
n ∈RR×R, ∀t∈ [T ],
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where the notation
∑

n:(n,t)∈Ω
implies the sum over all n in the observed index set Ω with the

fixed index t.

Remark 2. If we let the first term of the left-hand side in (16) as

C ≜WPΩ(W
⊤X)∈RR×T , (20)

then the t-th column vector ct ∈RR of the matrix C is given by

ct =
∑

n:(n,t)∈Ω
wnw

⊤
nxt =Stxt ⇒ vec(C) =S vec(X). (21)

In the meantime, if we let the VAR components in (16) be

E ≜
∑

k∈[0,d]
A⊤

k

( ∑

h∈[0,d]
AhXΨ⊤

h

)
Ψk ∈RR×T , (22)

then according to the mixed-product property of Kronecker product in Lemma 2, we have

vec(E) =
∑

k∈[0,d]
(Ψ⊤

k ⊗A⊤
k ) vec

( ∑

h∈[0,d]
AhXΨ⊤

h

)

=
∑

k∈[0,d]

∑

h∈[0,d]
(Ψk ⊗Ak)

⊤(Ψh⊗Ah) vec(X).
(23)

As a consequence, (16) is equivalent to

(
S+ γ

∑

k∈[0,d]

∑

h∈[0,d]
(Ψk ⊗Ak)

⊤(Ψh⊗Ah)+ ρIRT

)
vec(X) = vec(WPΩ(Y )), (24)

and thus leading to (19) as claimed.

However, the vectorized closed-form solution in (19) is memory-consuming and compu-

tationally expensive for large problems. In large applications, as suggested by Rao et al.

(2015), Chi et al. (2019), the alternating minimization with conjugate gradient for solving

matrix factorization problems is both efficient and scalable. The conjugate gradient method

allows one to search for the approximated solution to a system of linear equations with a

relatively small number of iterations (e.g., 5 or 10). Therefore, to estimate the temporal

factor matrix X, we develop an efficient conjugate gradient routine. We first define the

left-hand side of (24) as the function θx :RR×T →RRT , whose formula is given by

θx(X)≜
(
S+ γ

∑

k∈[0,d]

∑

h∈[0,d]
(Ψk ⊗Ak)

⊤(Ψh ⊗Ah)+ ρIRT

)
vec(X), (25)
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which is equivalent to

θx(X) = vec
(
WPΩ(W

⊤X)+ γ
∑

k∈[0,d]
A⊤

k

( ∑

h∈[0,d]
AhXΨ⊤

h

)
Ψk + ρX

)
. (26)

Accordingly, we let the right-hand side of (24) be

ψx ≜ vec(WPΩ(Y )). (27)

As mentioned above, (24) is in the form of a system of linear equations, and its system

matrix S+γ
∑

k∈[0,d]
∑

h∈[0,d](Ψk⊗Ak)
⊤(Ψh⊗Ah)+ρIRT is a symmetric positive-definite

matrix. The conjugate gradient method is well-suited to such Kronecker-structured linear

equations. Algorithm 1 summarizes the estimation procedure for approximating the least

squares solution to X in (19). Alternatively, we can use the conjugate gradient to solve

(13) when estimating the spatial factor matrix W .

Algorithm 1 Conjugate Gradient for Approximating X

Input: Data matrix Y with the observed index set Ω, spatial factor matrix W , initialized

temporal factor matrix X, coefficient matrices {Ak}k∈[d], and maximum iteration ℓmax

(e.g., ℓmax = 5).

Output: Estimated temporal factor matrix X.

1: Initialize x0 by the vectorized X.

2: Compute residual vector r0 =ψx − θx(X), and let d0 = r0.

3: for ℓ= 0 to ℓmax− 1 do

4: Convert vector dℓ into matrix Dℓ.

5: Compute αℓ =
r⊤
ℓ rℓ

d⊤
ℓ θx(Dℓ)

.

6: Update xℓ+1 =xℓ +αℓdℓ.

7: Update rℓ+1 = rℓ −αℓθx(Dℓ).

8: Compute βℓ =
r⊤
ℓ+1rℓ+1

r⊤
ℓ rℓ

.

9: Update dℓ+1 = rℓ+1 +βℓdℓ.

10: end for

11: Convert vector xℓmax into matrix X.
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3.6. Coefficient Matrix Estimation

The coefficient matrices {Ak}k∈[d] in NoTMF represent temporal correlations of the tempo-

ral factors {xt}t∈[T ]. According to the property of the Kronecker product, one can rewrite

the formula such that

∑

k∈[d]
AkXΨ⊤

k =A1XΨ⊤
1 +A2XΨ⊤

2 + · · ·+AdXΨ⊤
d

=
[
A1 A2 · · · Ad

]




X 0 · · · 0

0 X · · · 0
...

...
. . .

...

0 0 · · · X




︸ ︷︷ ︸
=Id⊗X




Ψ⊤
1

Ψ⊤
2

...

Ψ⊤
d



,

(28)

and as a consequence, the subproblem with respect to the coefficient matrices can be

formulated as

min
A

γ

2

∥∥XΨ⊤
0 −A(Id ⊗X)Ψ⊤∥∥2

F
, (29)

where

A=
[
A1 A2 · · · Ad

]
∈RR×(dR),

Ψ=
[
Ψ1 Ψ2 · · · Ψd

]
∈R(T−d−m)×(dT ),

are augmented matrices. As each matrix has d sub-matrices, A and Ψ show dR and dT

columns, respectively. Since we build correlations by VAR on the temporal factors, the

subproblem would only demonstrate the VAR component. The decision variable of this

subproblem is the augmented coefficient matrix A. The partial derivative of f with respect

to the matrix A is given by

∂f

∂A
=−γXΨ⊤

0 Ψ(Id ⊗X)⊤+ γA(Id ⊗X)Ψ⊤Ψ(Id ⊗X)⊤. (30)

Let ∂f
∂A

= 0, then we have a least squares solution as

A=XΨ⊤
0

(
(Id ⊗X)Ψ⊤)†, (31)

where ·† denotes the Moore-Penrose pseudo-inverse.
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3.7. Solution Algorithm of NoTMF

As mentioned above, the alternating minimization scheme of NoTMF possesses the closed-

form solutions to all three variables {W ,X,A}. For the spatial factor matrix W , it is not

difficult to write down the least squares solutions to the column vectors {wn}n∈[N ] (see

(14)), but one can also compute the approximated solution to the matrix W from (13)

with conjugate gradient. For the temporal factor matrix X, computing from (24) with

least squares is not as efficient as computing from (16) with conjugate gradient (see Algo-

rithm 1). Algorithm 2 summarizes the implementation of NoTMF. In fact, the alternating

minimization of NoMTF is the block coordinate minimization with three blocks/variables

{W ,X,A}. One can justify our algorithm decreases the objective function monotonically

in the iterative process and the NoTMF algorithm can be converged.

Algorithm 2 NoTMF(Y ,Ω, d,R,γ, ρ,m)

Input: Data matrix Y with the observed index set Ω, order d∈Z+ and season m∈Z+ of

the VAR, rank R ∈Z+, and hyperparameters {γ, ρ}.
Output: Spatial factor matrix W , temporal factor matrix X, and coefficient matrix A.

1: Initialize the variables {W ,X,A}.
2: Generate temporal operator matrices {Ψk}t∈[0,d].
3: repeat

4: Compute W as the least squares solution (or conjugate gradient).

5: Compute X from (16) with conjugate gradient.

6: Compute A by the least squares solution.

7: until convergence

3.8. Rolling Forecasting with Dictionary Learning

In the following, we introduce the forecasting scheme for NoTMF. For example, Figure 2

shows how NoTMF works on the single-step movement speed forecasting in the latent

spaces. At the t-th time step, as shown in Figure 2(a), we can first estimate the spatial

factor matrix, the temporal factor matrix, and the coefficient matrix on the sparse input

data Y t ∈ RN×t (see Algorithm 2), then we can forecast the next-step temporal factors

as x̂t+1 by using seasonal differenced VAR. As we have both spatial factor matrix W

and temporal factors x̂t+1, it is not hard to generate the future movement speed values
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as ŷt+1 = W⊤x̂t+1. Since we already have the spatial factor matrix W , we can fix this

variable as a dictionary matrix and instantly compute the temporal factor matrix and the

coefficient matrix at the t+ 1-th time step, referring to the online dictionary learning as

mentioned by Gultekin and Paisley (2018). In Figure 2(b), we can first use input data

Y t+1 ∈ RN×(t+1) to update the temporal factor matrix and the coefficient matrix. Then,

the seasonal differenced VAR allows one to forecast the next step temporal factors as x̂t+2

and generate the future movement speed values as ŷt+2 =W⊤x̂t+2.

? ?

?
?

? ?

Y t ∈ RN×t

︸ ︷︷ ︸
t− 3 t− 2 t− 1 t t+ 1 t+ 2 t+ 3 time step

xt−3 xt−2 xt−1 xt xt+1︸
︷︷

︸

R x̂t+1 = xt+1−m + VAR(d,m)

(a) At the t-th time step

? ?

?
?

? ??

?
?

Y t+1 ∈ RN×(t+1)

︸ ︷︷ ︸
t− 3 t− 2 t− 1 t t+ 1 t+ 2 t+ 3 time step

xt−3 xt−2 xt−1 xt xt+1 xt+2︸
︷︷

︸
R x̂t+2 = xt+2−m + VAR(d,m)

(b) At the t+1-th time step

Figure 2 Sparse movement speed forecasting with NoTMF in which VAR(d,m) is the VAR with the order d and

the season m.

In this work, we consider δ-step forecasting on the sparse movement speed data. Algo-

rithm 2 provides an efficient routine for estimating {W ,X,A}. We first perform seasonal

differencing on temporal factors {xt}t∈[T ] as ẋ
m
t =xt−xt−m for all t∈ [m+1, T ], and then

forecast ẋm
T+1, . . . , ẋ

m
T+δ through the seasonal differenced VAR with the time horizon δ ∈Z+.

Finally, we generate the forecasts of movement speed values ŷT+1, . . . , ŷT+δ sequentially by

ŷT+1 =W⊤x̂T+1, ŷT+2 =W⊤x̂T+2, . . . , ŷT+δ =W⊤x̂T+δ. (32)

When performing rolling forecasting on sparse movement speed data, we denote the

incremental data at the κ-th rolling forecasting with the time horizon δ by Y κ ∈
RN×(T+(κ−1)·δ). NoTMF can process the entire data at once, but it is impractical to accom-

modate data arriving sequentially. Thus, we take into account the dictionary learning with
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a fixed spatial factor matrix (also examined by Gultekin and Paisley (2018)). Such a collec-

tion of spatial factors enables the system to transform the incremental movement data to

lower-dimensional temporal factors. At each rolling time, we first learn the temporal factor

matrix through the conjugate gradient method. Then we update the coefficient matrix

accordingly to capture time-evolving patterns. Algorithm 3 shows the implementation of

rolling forecasting on the sparse movement speed data.

Algorithm 3 NoTMF Rolling Forecasting on Sparse Movement Speed Data

Input: Data matrix Y ∈ RN×T with the observed index set Ω, order d ∈ Z+ and season

m∈Z+ of VAR, rank R ∈Z+, K rolling times, and forecasting time horizon δ ∈Z+.

Output: Movement speed forecasts Ŷ ∈RN×δ·K .

1: Train NoTMF on data matrix Y as shown in Algorithm 2 and return the result:

W ,X,A=NoTMF(Y ,Ω, d,R,γ, ρ,m).

2: Generate the forecasts ŷT+1, . . . , ŷT+δ by (32) and stack them as the first δ column

vectors of Ŷ .

3: for κ= 2 to K do

4: Input the incremental movement speed data Y κ ∈RN×(T+(κ−1)·δ) in which the last δ

column vectors are the newly arriving data.

5: Generate temporal operator matrices {Ψk}k∈[0,d].
6: Compute Xκ from data Y κ with conjugate gradient.

7: Update the coefficient matrix A.

8: Generate the forecasts ŷT+(κ−1)·δ+1, . . . , ŷT+(κ−1)·δ+δ and stack them to Ŷ .

9: end for

4. Experiments on Uber Movement Data

Within the context of this study, we conduct an empirical investigation for the NoTMF

model through forecasting sparse movement speeds in urban road networks. Specifically, we

evaluate NoTMF based on two large-scale movement datasets: the NYC Uber movement

speed dataset and the Seattle Uber movement speed dataset. Both datasets are character-

ized by hourly movement speed values, derived from the trajectories of ridesharing vehicles

across various road segments. But if one road segment at a certain hour does not cover

at least five unique trips/traces, then the corresponding road-level traffic speed would be
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ignored. In light of this, both datasets involve a large amount of missing/unobserved values,

thereby accentuating the datasets’ inherent sparsity.

4.1. Data Analysis and Experiment Setup

The datasets originate from the Uber Movement project, which aims to equip cities with

data and analytical tools to navigate and address urban transportation challenges. The

project’s movement speed data, indicative of average speeds across specified urban road

segments, represent the high-dimensional and sparse nature of traffic data encountered

in real-world settings. Figure 3 shows two cases of Uber movement speed data in NYC

and Seattle, USA, respectively. The high-dimensional and sparse data inevitably result in

difficulties in analyzing traffic states or supporting data-driven city planning and decision-

making.
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(a) NYC Uber movement speed data.
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(b) Seattle Uber movement speed data.

Figure 3 The missing rates of Uber movement speed data aggregated per week over the whole year of 2019.

The red curve shows the average missing rates over all 52 weeks. The red area shows the standard

deviation of missing rates in each hour over 52 weeks. The 168 time steps refer to 168 hours of

Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday, and Monday. (a) The dataset has 98,210

road segments, and the overall missing rate is 64.43%. (b) The dataset has 63,490 road segments,

and the overall missing rate is 84.95%.

For our experiments, we choose the data collected over the first ten weeks of 2019 from

98,210 road segments in NYC, comprising a dataset matrix size of 98210×1680. Due to the

insufficient sampling of ridesharing vehicles in urban road networks, the dataset contains
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Figure 4 Histogram of observation rate of road segment in the NYC Uber movement speed dataset. Only a

small fraction of road segments have an observation rate greater than 50%, i.e., 30723/98210≈ 31%.

For the observation rates greater than 20% and 80%, there are about 49% and 17% of road segments,

respectively.
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Figure 5 Movement speed of 6 road segments of January 1, 2019 (24 hours) in NYC. Blue points indicate the

observed speed from the movement dataset, while black points indicate missing values (set to 0).

66.56% missing values. It can be seen that the time-evolving missing rates have periodicity

patterns. At midnight, the missing rate can even reach ∼90%. This is due to limited

ridesharing vehicles on the road network during nights. At some specific hours, only a small

fraction of road segments have speed observations. Similarly, the Seattle Uber movement

speed dataset covers the hourly movement speed data from 63,490 road segments during

the first ten weeks of 2019. The data matrix is of size 63490× 1680 and contains 87.35%

missing values, showing that the sparsity issue in this dataset is more challenging to handle
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than the NYC Uber movement speed dataset. Such sparsity underscores the critical need

for sophisticated forecasting models capable of navigating these data gaps effectively.

Figure 4 shows the complementary histogram of the percentage of observed values in

the NYC dataset. As can be seen, a large fraction of road segments only have very limited

observations. This is especially interesting, as it shows that half of the road segments have

less than 20% movement speed observations. Only 17% road segments have more than 80%

movement speed observations. We can also see examples of incomplete movement speed

observations from Figure 5.

In our experiment, we evaluate the model with 8-week data (from January 1st to Febru-

ary 25th) as the training set, one-week data (February 26th to March 4th) for validation,

and one-week data (March 5th to March 11th) as the test set. We use rolling forecasting

with time horizons δ= 1,2,3,6, corresponding to δ-hour-ahead forecasting. To confirm the

importance of seasonal differencing, we evaluate the proposed NoTMF model and baseline

models in the TMF framework. We consider the following TMF models in the literature:

• TRMF (Yu et al. 2016): TRMF achieves temporal modeling on latent temporal fac-

tors by applying a univariate autoregressive process.

• BTMF (Chen and Sun 2022): BTMF is a fully Bayesian TMF model with Gaussian

assumption, which is solved by using the Markov chain Monte Carlo (MCMC) algorithm.

This model has been empirically demonstrated to be state-of-the-art against some baseline

models (e.g., matrix/tensor factorization) for both time series imputation and forecasting

on sparse data.

• BTRMF (Chen and Sun 2022): Bayesian TRMF is a fully Bayesian treatment for

the TRMF model with Gaussian assumption.

• CTNNM (Liu and Zhang 2022, Liu 2022): Circulant tensor nuclear norm minimiza-

tion that is implemented by the fast Fourier transform.

4.2. Forecasting Performance

We evaluate the task of traffic time series forecasting in the presence of missing data on the

NYC and Seattle Uber movement speed datasets. The preliminary experiment evaluates

the NoTMF model with different ranks R= 5,10,15,20,25,30. To set the hyperparameters

{γ, ρ}, we first prescribe a collection of hyperparameters γ ∈ {102,101,100,10−1,10−2} and

ρ ∈ {10γ,5γ, γ,5 × 10−1γ,10−1γ} and evaluate the NoTMF with these settings on the

training and validation sets. Then, we find the best hyperparameter pair for testing the
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Figure 6 Performance of NoTMF with season-168 differencing (i.e., m = 168) and order d = 6 on the NYC

dataset. The validated parameters are γ = 1 and ρ= 5.

model. In this case, the hyperparameters of NoTMF are properly given by γ = 1 and ρ= 5.

As shown in Figure 6, NoTMF with a larger rank essentially provides higher accuracy but

such improvement becomes marginal when R> 15. In the following experiments, we choose

R= 10 for a good balance between performance and computational cost.

Table 2 shows the forecasting performance of NoTMF and baseline models on the test

set from the NYC dataset. We summarize the following findings from the results:

• With the increase in forecasting time horizons, the forecasting errors of all models

increase. For each time horizon, as the order increases, the forecasting performance of

NoTMF and TRMF is improved.

• CTNNM, by its definition, is capable of global time series trend modeling, therefore

the forecasting performance with the increase of time horizons does not have a significant

accuracy reduction. The overall performance of CTNNM is as competitive as BTMF.

• The NoTMF models with different differencing operations demonstrate a significant

improvement over TRMF in terms of forecasting accuracy. In contrast to the univariate

autoregressive process, there is a clear benefit from temporal modeling with a multivariate

VAR process.

• On this dataset, we have two choices for setting the season. One is m = 24, corre-

sponding to the daily differencing, while another is m= 168, corresponding to the weekly

differencing. For both settings, NoTMF can achieve competitively accurate forecasts.

Figure 9 shows the predicted time series and the partially observed speed values of some

road segments. It demonstrates that the forecasts produced by NoTMF are consistent with

the temporal patterns underlying partially observed time series. Thus, the NoTMF model
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Table 2 Forecasting performance (in MAPE/RMSE) on the test set of the NYC movement speed dataset. The

rolling forecasting tasks include different time horizons, i.e., δ= 1,2,3,6. We consider the rank as R= 10. The

best (γ, ρ) is found on the validation set to be (1,5) for NoTMF and TRMF. Since CTNNM does not have the

order d, we only present the forecasting results along the first row at each time horizon. Note that the best test

results are highlighted in bold fonts.

δ d
NoTMF

(m= 24)

NoTMF

(m= 168)
TRMF BTMF BTRMF CTNNM

1

1 13.63/2.88 13.53/2.86 14.50/3.12 14.94/3.13 15.93/3.33 15.79/3.12

2 13.47/2.84 13.41/2.84 14.14/3.05 15.70/3.41 15.90/3.35 -/-

3 13.46/2.84 13.39/2.83 13.87/2.96 15.80/3.34 16.08/3.43 -/-

6 13.41/2.83 13.39/2.83 14.00/2.98 15.45/3.27 16.26/3.48 -/-

2

1 13.91/2.96 13.76/2.94 15.85/3.43 15.33/3.21 16.85/3.56 15.91/3.14

2 13.77/2.92 13.63/2.89 15.04/3.31 15.87/3.32 17.27/3.71 -/-

3 13.72/2.91 13.61/2.89 15.25/3.36 15.69/3.33 17.24/3.74 -/-

6 13.59/2.87 13.57/2.88 14.92/3.24 15.91/3.39 18.18/3.97 -/-

3

1 14.30/3.05 14.06/3.02 17.52/3.83 15.86/3.32 18.61/3.91 16.02/3.16

2 14.01/2.98 13.84/2.94 17.32/4.00 16.30/3.40 18.90/4.10 -/-

3 13.95/2.97 13.79/2.93 16.91/3.71 16.56/3.49 18.68/4.05 -/-

6 13.78/2.92 13.73/2.92 16.72/3.65 15.49/3.27 20.45/4.66 -/-

6

1 14.61/3.11 14.67/3.20 21.20/4.70 15.99/3.32 22.40/4.69 15.96/3.15

2 14.30/3.03 14.33/3.09 20.87/5.01 16.04/3.33 23.56/5.63 -/-

3 14.26/3.03 14.28/3.09 20.08/4.65 15.67/3.28 24.27/5.72 -/-

6 14.06/2.97 14.16/3.06 20.40/4.35 16.38/3.50 26.34/6.60 -/-

can extract implicit temporal patterns (see Figure 10 for instance) from partially observed

data and in the meanwhile perform forecasting.

On the Seattle dataset, we perform forecasting and compare the proposed NoTMF

with some baseline models as shown in Table 3. Of these results, it seems that VAR in

the NoTMF and BTMF models helps produce reliable forecasting performance with the

increase of forecasting time horizons, while the univariate autoregression in the TRMF and

BTRMF models fails to maintain the performance of the same level as the increase of fore-

casting time horizons. Notably, NoTMF consistently outperforms other models as shown



Chen et al.: Forecasting Sparse Movement Speed of Urban Road Networks with NoTMF
Article submitted to Transportation Science; manuscript no. TS-2024-0629 27

Table 3 Forecasting performance (MAPE/RMSE) on the test set of the Seattle movement speed dataset. The

rolling forecasting tasks include different time horizons, i.e., δ= 1,2,3,6. We consider the rank as R= 10. The

best (γ, ρ) is found on the validation set to be (1,5) for NoTMF and TRMF. Since CTNNM does not have the

order d, we only present the forecasting results along the first row at each time horizon. Note that the best test

results are highlighted in bold fonts.

δ d
NoTMF

(m= 24)

NoTMF

(m= 168)
TRMF BTMF BTRMF CTNNM

1

1 10.45/3.32 10.26/3.22 11.58/3.79 12.23/3.89 12.52/4.01 12.74/3.83

2 10.53/3.34 10.29/3.23 10.92/3.51 12.95/4.18 13.16/4.31 -/-

3 10.42/3.30 10.30/3.22 10.86/3.47 12.96/4.22 13.89/4.64 -/-

6 10.50/3.32 10.21/3.21 10.99/3.51 12.91/4.18 13.90/4.67 -/-

2

1 10.90/3.55 10.32/3.25 12.07/4.02 12.74/4.06 13.31/4.32 12.97/3.90

2 10.90/3.52 10.31/3.24 12.59/4.24 13.68/4.45 13.44/4.43 -/-

3 10.81/3.49 10.31/3.24 12.01/3.96 13.55/4.46 13.66/4.56 -/-

6 10.57/3.38 10.25/3.23 12.18/3.98 13.56/4.42 14.67/4.92 -/-

3

1 11.27/3.71 10.41/3.29 13.47/4.62 13.16/4.15 14.01/4.52 13.36/3.97

2 11.26/3.71 10.30/3.27 14.48/5.19 13.63/4.37 14.39/4.76 -/-

3 11.11/3.62 10.35/3.28 14.04/4.83 13.76/4.42 14.67/4.84 -/-

6 10.96/3.55 10.30/3.26 13.32/4.51 13.28/4.29 15.64/5.31 -/-

6

1 11.88/3.97 10.63/3.43 15.59/5.32 13.63/4.30 16.39/5.28 13.82/4.04

2 11.58/3.83 10.55/3.40 18.66/7.20 13.27/4.19 16.77/5.58 -/-

3 11.54/3.81 10.57/3.39 17.94/6.32 13.88/4.36 17.35/5.70 -/-

6 11.27/3.70 10.53/3.35 15.12/5.24 13.30/4.24 16.63/5.62 -/-

in Table 3. We set NoTMF with both daily differencing (i.e., m= 24) and weekly differ-

encing (i.e., m = 168), and it shows that the weekly differencing is superior to the daily

differencing. Therefore, proper seasonal differencing in NoTMF is important for improving

the forecasting performance.

Figure 7 and 8 show the speed distribution of the ground truth data versus the forecasts

achieved by NoTMF on NYC and Seattle datasets, respectively. For each missing rate

range, we group the speed observations of the road segments whose missing rate of the test

set is in that range. For road segments with relatively lower missing rates, e.g., (0,10%],
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the histograms present two peaks. For example on the Seattle dataset (see Figure 8(a-b)),

one peak is around the speed of 20 mph, while another is around the speed of 60 mph.

This implies that the road segments with relatively complete speed observations exhibit

both lower speeds of congested traffic (possibly during peak hours) and higher speeds of

free-flow traffic (possibly during off-peak hours), revealing the bi-modal traffic states. Of

these results, NoTMF can accurately forecast both congested and free-flow traffic speeds.

As a whole, we can summarize from Figure 7 and 8 that the forecasts produced by NoTMF

are accurate when compared to the ground truth data.

4.3. Nonstationarity Analysis

Nonstationarity is an important characteristic in real-world traffic time series data. Fig-

ure 10 illustrates some temporal factors of NoTMF with the following setting: d = 1,

R= 10, and m= 24. As can be seen, temporal factors #3, #5, #6, #7, #8, and #9 show

clear seasonality and periodicity. The long-term season is associated with the week, i.e.,

7×24 = 168 time steps (hours), while the short-term season is associated with the day, i.e.,

24 time steps (hours). For other temporal factors, they also show clear trends with weak

seasonality and periodicity. Therefore, making use of seasonal differencing in nonstation-

ary traffic state data can benefit the forecasting performance (as noted in Table 2 and 3).

Our results further demonstrate the effectiveness of seasonal differencing in characterizing

temporal process in the factor matrix X.

In particular, we visualize the coefficient matrix of NoTMF with the rank R= 10 and

the order d= 3 in Figure 11. In these heatmaps, each is of size 10× 10 and the diagonal

entries represent the auto-correlations of each time series (i.e., temporal factor). In contrast

to the NoTMF model without differencing operation, it demonstrates that the coefficient

matrices of NoTMF with seasonal differencing show weak correlations. This implies the

importance of seasonal differencing for stationarizing the time series and eliminating the

correlations.

5. Concluding Remarks

In this study, we propose a NoTMF model, specifically designed to forecast the complex

dynamics of high-dimensional, sparse, and nonstationary movement speed data collected

from Uber ridesharing vehicles. Distinguishing itself from traditional TMF models, NoTMF

innovatively incorporates differencing operations on latent temporal factors, enhancing its
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Figure 7 The histogram of ground truth data and forecasts achieved by NoTMF with δ= 6 and d= 6 in the test

set of the NYC dataset.
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Figure 8 The histogram of ground truth data and forecasts achieved by NoTMF with δ= 6 and d= 6 in the test

set of the Seattle dataset.
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Figure 9 Five examples from the test set (corresponding to five road segments) for showing the forecasting

results of the NoTMF model with time horizon δ = 6. The red curves indicate the forecasts in the

testing week, while the blue scatters indicate the ground truth speed data.

capability to model nonstationary time series data effectively. The reformulation of the

temporal loss function through a sequence of matrix operators is a key innovation, enabling

the application of the conjugate gradient method for solving the optimization problem.

This method provides an efficient and scalable approach for approximating the closed-form

least squares solution to the factor matrix from a generalized Sylvester equation, thus facil-

itating robust modeling and forecasting of large-scale, high-dimensional urban traffic data.

Our comprehensive numerical analysis, conducted on two extensive Uber movement speed

datasets, demonstrates NoTMF’s superior forecasting performance compared to several

baseline models.

Moreover, a comparative analysis with existing TMF models underscores NoTMF’s abil-

ity to address nonstationary phenomena in time series data, particularly those exhibiting

distinct seasonality and trends. The integration of seasonal differencing within the NoTMF

framework is pivotal for elaborating the underlying seasonality and periodicity in urban

road network speed data. Specifically, setting the seasonality parameter m= 1 transforms

the temporal loss function to a first-order differenced VAR process, illustrating NoTMF’s
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Figure 10 Temporal factors of NoTMF model (R= 10) on NYC movement speed data. The order and season

of NoTMF are set as d= 1 and m= 24, respectively. The subfigures only show the temporal factors

in the first two weeks.

flexibility in adapting to varying degrees of time series stationarity through the application

of both first-order and seasonal differencing techniques.

Looking forward, the potential for integrating nonlinear temporal dependencies into

the NoTMF model presents an exciting avenue for research. Such advancements could

involve replacing the current linear latent temporal equation (7) with nonlinear functions,

leveraging the computational power of deep learning to capture more complex temporal

dynamics in urban traffic data (Prince 2023). This evolution of the NoTMF model would

not only enhance its forecasting accuracy but also expand its applicability to a broader

range of time series datasets characterized by intrinsic seasonal and trend patterns.
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Figure 11 Heatmap of coefficient matrices Ak, ∀k ∈ [d] in NoTMF. Note that we set the rank as R = 10 and

the order as d= 3 for both models.

Acknowledgment

Xinyu Chen and Chengyuan Zhang would like to thank the Institute for Data Valorisa-

tion (IVADO), Fonds de recherche du Québec – Nature et technologies (FRQNT), and

the Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation

(CIRRELT) for providing the PhD Excellence Scholarship to support this study.

References

Basu S, Li X, Michailidis G (2019) Low rank and structured modeling of high-dimensional vector autore-

gressions. IEEE Transactions on Signal Processing 67(5):1207–1222.

Basu S, Michailidis G (2015) Regularized estimation in sparse high-dimensional time series models. The

Annals of Statistics 43(4):1535–1567.

Carriero A, Kapetanios G, Marcellino M (2016) Structural analysis with multivariate autoregressive index

models. Journal of Econometrics 192(2):332–348.

Che Z, Purushotham S, Cho K, Sontag D, Liu Y (2018) Recurrent neural networks for multivariate time

series with missing values. Scientific reports 8(1):1–12.

Chen X, Sun L (2022) Bayesian temporal factorization for multidimensional time series prediction. IEEE

Transactions on Pattern Analysis and Machine Intelligence 44(9):4659–4673.
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