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Correlating Time Series with Interpretable
Convolutional Kernels

Xinyu Chen, HanQin Cai, Fuqiang Liu, and Jinhua Zhao

Abstract—This study addresses the problem of convolutional
kernel learning in univariate, multivariate, and multidimensional
time series data, which is crucial for interpreting temporal pat-
terns in time series and supporting downstream machine learning
tasks. First, we propose formulating convolutional kernel learning
for univariate time series as a sparse regression problem with
a non-negative constraint, leveraging the properties of circular
convolution and circulant matrices. Second, to generalize this ap-
proach to multivariate and multidimensional time series data, we
use tensor computations, reformulating the convolutional kernel
learning problem in the form of tensors. This is further converted
into a standard sparse regression problem through vectorization
and tensor unfolding operations. In the proposed methodology,
the optimization problem is addressed using the existing non-
negative subspace pursuit method, enabling the convolutional
kernel to capture temporal correlations and patterns. To evaluate
the proposed model, we apply it to several real-world time series
datasets. On the multidimensional ridesharing and taxi trip data
from New York City and Chicago, the convolutional kernels
reveal interpretable local correlations and cyclical patterns, such
as weekly seasonality. For the monthly temperature time series
data in North America, the proposed model can quantify the
yearly seasonality and make it comparable across different
decades. In the context of multidimensional fluid flow data, both
local and nonlocal correlations captured by the convolutional
kernels can reinforce tensor factorization, leading to performance
improvements in fluid flow reconstruction tasks. Thus, this
study lays an insightful foundation for automatically learning
convolutional kernels from time series data, with an emphasis on
interpretability through sparsity and non-negativity constraints.

Index Terms—Time series, machine learning, circular convo-
lution, sparse regression, subspace pursuit, tensor computations,
convolutional kernels

I. INTRODUCTION

T IME series data are one of the most important data types
encountered in real-world systems, capturing intrinsic

temporal correlations and patterns such as weekly seasonality
of human mobility as shown in Figure 1 that are essential for
understanding and forecasting various phenomena. Accurately
modeling these correlations and patterns is fundamental in
many domains, such as spatiotemporal prediction and control
systems. To achieve this, it is common to formulate time
series coefficients using both linear and nonlinear machine
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learning approaches, in the meantime providing a flexible
framework for analyzing and predicting time-dependent be-
haviors. In statistics, autoregression (AR) models have been
extensively applied to time series analysis, offering an efficient
approach to modeling temporal dependencies [1], [2]. The
classical AR framework also leads to vector autoregression
(VAR) for multivariate time series, which captures the inter-
dependencies among a sequence of time series [2], [3]. One
classical counterpart that takes the form of VAR—dynamic
mode decomposition [4]–[7]—combines the concepts from
fluid dynamics and machine learning to characterize complex
dynamical systems. This method is effective in applications
such as fluid flow analysis, where it decomposes the dynamics
into a set of modes that describe the system’s behavior over
time.

24 48 72 96 120 144 168 192 216 240 264 288 312 336

0.5
1.0
1.5
2.0

·104

∆t = 168 ∆t = 168

∆t = 168

Time (hour)

Tr
ip

co
un

t

Fig. 1. Hourly ridesharing trip time series in Chicago during the first two
weeks since April 1, 2024. The time series exhibits weekly seasonality as
∆t = 168.

When applying AR to a circulant time series—where the AR
order equals the length of the time series—the AR operation
can be equivalently viewed as a circular convolution between
the time series and its coefficients. The convolution operation
is vital for filtering and signal processing tasks [8], where the
convolution theorem relates the convolution in the time domain
to multiplication in the frequency domain via the discrete
Fourier transform. Recent advancements in machine learning
have further expanded the use of convolution operations in
sequence modeling [9]. Convolutional kernel methods such
as Laplacian convolutional representation [10] enable charac-
terizing the complex temporal dependencies. To summarize,
the aforementioned regression methods, including AR, VAR,
and convolution, take linear equations and can be seamlessly
converted into linear regressions.

Another aspect of enhancing model interpretability in ma-
chine learning is using sparsity-induced norms. Typically,
structured sparsity regularization offers an effective way to
select features and improve model interpretability [11]. The
LASSO method [12] is particularly useful for identifying key
features when only a subset of features (i.e., input variables)
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is relevant or correlated with the target variables (i.e., output
variables), as it lets the coefficients of irrelevant feature be
zero. Since sparsity-induced norms such as the ℓ0- and ℓ1-
norm enforce sparsity patterns, the resulting algorithms are
particularly useful for tasks such as sparse signal recovery
[13], outlier detection [14], variable selection in genetic fine
mapping [15], and nonlinear system identification [16], to
name but a few.

However, manually designed kernels (e.g., kernels refer-
ring to the random walk [17]) in time series methods often
introduce systematic errors due to human cognitive biases.
The kernel learning frameworks vary significantly due to the
different purposes such as regression and interpretability. To
capture the interpretable kernels for characterizing temporal
patterns, we incorporate sparse linear regression into time
series convolution with sparse kernels. This study aims to
connect time series analysis with the learning process of
interpretable convolutional kernels, in which the proposed
method offers significant benefits, such as reducing biases
in time series convolution and uncovering temporal patterns.
Overall, the contribution of this study is three-fold:

• We reformulate the convolutional kernel learning from
univariate time series data as a non-negative τ -sparse
regression problem, which is then solved using a greedy
method derived from classical subspace pursuit (SP)
[18] methods. In the algorithmic implementation, the
properties of circulant structure and circular convolution
are fully utilized to simplify the computations involved
in linear transformation and non-negative least squares.

• We formulate the τ -sparse regression problem not only
for univariate time series but also for multivariate and
multidimensional time series, fully utilizing tensor com-
putations. The optimization problem is well-suited for
learning convolutional kernels from sequences of time
series. Leveraging the properties of tensor computations
also allows one to convert the optimization problem
involving multivariate or multidimensional time series
into standard τ -sparse regression problems.

• We demonstrate the significance of learning convolutional
kernels from several real-world time series datasets, in-
cluding human mobility data, North America temperature
data, and fluid flow data. The kernels learned from
these time series are important for interpreting underlying
local and nonlocal temporal correlations and patterns. We
empirically show the performance gains by using these
convolutional kernels in tensor factorization to address
fluid flow reconstruction problems.

The remainder of this paper is organized as follows. Sec-
tion II reviews the related literature, while Section III intro-
duces the basic mathematical notations. Section IV presents
the τ -sparse regression framework and algorithms for learn-
ing convolutional kernels from univariate, multivariate, and
multidimensional time series. In Section V, we evaluate the
proposed methods on several real-world time series datasets.
Finally, we conclude this study in Section VI.

II. RELATED WORK

A. Solving Sparse Regression

In the fields of signal processing and machine learning, a
classical optimization problem involves learning sparse repre-
sentations [13] from a linear regression model with measure-
ments x ∈ Rm and A ∈ Rm×n, such that

min
w

∥x−Aw∥22
s.t. ∥w∥0 ≤ τ, τ ∈ Z+,

(1)

is of great significance for many scientific areas (e.g., com-
pressive sensing [13], [19]) due to the ℓ0-norm on the decision
variable w, which counts the number of non-zero entries. As
shown in Figure 2, it becomes a classical least squares problem
[20] if x and A are known variables and the vector w is not
required to be sparse. In the fields of signal processing and
information theory, a large manifold of iterative methods and
algorithms have been developed for this problem because the
problem (1) is typically NP-hard. These include some of the
most classical iterative greedy methods, such as orthogonal
matching pursuit (OMP) [21], [22], compressive sampling
matching pursuit (CoSaMP) [23], and subspace pursuit (SP)
[18]. Both CoSaMP and SP are fixed-cardinality methods
whose support set has a fixed cardinality, while the support
set in OMP is appended incrementally during the iterative
process. In the case of inferring causality, if the matrix A has
n explanatory variables, then the sparse regression problem
becomes a classical variable selection technique [15]. When w
is assumed to be non-negative, the methods derived from OMP,
such as non-negative orthogonal greedy algorithms, require
one to resolve the non-negative least squares problem [24],
[25].

x ∈ Rm

≈

A ∈ Rm×n

×
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Fig. 2. Linear regression problem minw ∥x − Aw∥22 with τ -sparse
representation of the coefficient vector w. In compressive sensing, the goal
is to construct a sparse vector w given measurements x (i.e., the signal) and
A (e.g., the dictionary) [13]. The vector w is constrained to have no more
than τ non-zero entries in which τ ∈ Z+ refers to the sparsity level.

B. Learning Kernels from Time Series

In the field of statistics, time series problems have been well
investigated via the use of AR methods [2]. The coefficients
in the AR methods represent the correlations at different
times. For certain purposes such as modeling of local temporal
dependencies, time series smoothing using random walk can
minimize the errors of first-order differencing on the time
series. Instead of time series smoothing, Laplacian kernels
are more flexible for characterizing the temporal dependencies
[10], in which the temporal modeling is in the form of a
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circular convolution between Laplacian kernel and time series.
The probability product kernel, constructed based on proba-
bilistic models of the time series data, can evaluate exponential
family models such as multinomials and Gaussians and yields
interesting nonlinear correlations [26]. The auto-correlation
operator kernel can discover the dynamics of time series
by evaluating the difference between auto-correlations [27].
Besides, Gaussian elastic matching kernels possess a time-
shift and nonlinear representation in time series analysis [28].
However, setting the aforementioned kernels requires certain
assumptions and prior knowledge, a better way would be to
learn the kernels from time series automatically, improving the
model interpretability.

III. PRELIMINARIES

In this work, we summarize the basic symbols and notations
in Table I. Here, R denotes the set of real numbers, while Z+

refers to the set of positive integers. The definitions of tensor
unfolding and modal product (or mode-k product as shown in
Table I) are well explained in [29], [30]. For those symbols
and notations related to tensor computations, we also follow
the conventions in [29], [30].

TABLE I
SUMMARY OF THE BASIC NOTATION.

Notation Description

τ ∈ Z+ Sparsity level (positive integer)
x ∈ R Scalar
x ∈ Rn Vector of length n
X ∈ Rm×n Matrix of size m× n
X ∈ Rm×n×t Tensor of size m× n× t
∂f/∂X Partial derivative of f with respect to X
[i] Positive integer set {1, 2, . . . , i}, i ∈ Z+

∥ · ∥0 ℓ0-norm of vector
∥ · ∥2 ℓ2-norm of vector
∥ · ∥F Frobenius norm of matrix or tensor
⋆ Circular convolution
×k, ∀k ∈ Z+ Mode-k product between tensor and matrix
⊙ Khatri-Rao product

In particular, circular convolution is essential when dealing
with periodic signals and systems [7], and it is also an
important operation in this work. Given two vectors θ =
(θ1, θ2, · · · , θT )⊤ ∈ RT and x = (x1, x2, · · · , xT )

⊤ ∈ RT

of length T , the circular convolution of θ and x is denoted
by

y = θ ⋆ x ∈ RT , (2)

element-wise, this gives

yt =
∑

k∈[T ]

θt−k+1xk, ∀t ∈ [T ], (3)

where yt is the tth entry of y, and θt−k+1 = θt−k+1+T for t+
1 ≤ k. Since the results of circular convolution are computed
in a circulant manner, the circular convolution can therefore be
rewritten as a linear transformation using a circulant matrix.
In this case, we have

y = θ ⋆ x = x ⋆ θ = C(x)θ, (4)

where C : RT → RT×T denotes the circulant operator [10],
[31]. For example, on the vector x ∈ RT , the circulant matrix
can be written as follows,

C(x) =




x1 xT xT−1 · · · x2

x2 x1 xT · · · x3

x3 x2 x1 · · · x4

...
...

...
. . .

...
xT xT−1 xT−2 · · · x1



∈ RT×T . (5)

IV. METHODOLOGIES

In this study, we present a convolutional kernel learning
method to characterize the temporal patterns of univariate,
multivariate, and multidimensional time series data. First,
we formulate the optimization problem for learning temporal
kernels as a linear regression with sparsity and non-negativity
constraints. Then, we solve the optimization problem by using
the non-negative SP (NNSP) method.

A. On Univariate Time Series

1) Model Description: In real-world systems, time series
often exhibit complex correlations among both local and non-
local data points. In this study, we propose characterizing the
time series correlations using circular convolution, an approach
inspired by the temporal regularization with Laplacian kernels
introduced in [10]. Formally, for the univariate time series
x = (x1, x2, · · · , xT )

⊤ ∈ RT with T time steps, we formulate
the learning process as an optimization problem. The objective
function involves the circular convolution (denoted by ⋆)
between the temporal kernel θ (i.e., convolutional kernel) and
the time series x, i.e.,

min
w≥0

∥θ ⋆ x∥22

s.t.




θ =

[
1

−w

]
,

∥w∥0 ≤ τ, τ ∈ Z+,

(6)

in which the (τ + 1)-sparse kernel θ is designed to capture
temporal correlations. In the parameter setting, we assume
the first entry of θ is 1, while the remaining T − 1 entries
are non-positive values, parameterized by non-negative vector
w ∈ RT−1. The sparsity constraint applies to w, allowing
no more than τ positive entries, where τ is referred to as
the sparsity level. The sparsity assumption is meaningful for
parameter pruning, preserving only the most remarkable co-
efficients to characterize local and nonlocal temporal patterns.
In the circular convolution θ ⋆x within the objective function,
the temporal kernel θ can also be interpreted as a graph filter
with time-shift operator, as seen in the field of graph signal
processing (e.g., [32], [33]). By leveraging the property of
circular convolution, θ ⋆x = Θx, the matrix Θ ∈ RT×T can
be expressed as a matrix polynomial:

Θ = IT − w1F − w2F
2 − · · · − wT−1F

T−1, (7)

with the τ -sparse representation (i.e., a sequence of coeffi-
cients)

w = (w1, w2, · · · , wT−1)
⊤ ∈ RT−1, (8)
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and the time-shift matrix

F =




0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

0 0 0 · · · 0 0
0 0 0 · · · 1 0



∈ RT×T . (9)

Herein, IT is the identity matrix of size T × T .
As a result, we can express the temporal kernel θ in the

circular convolution θ ⋆ x and the corresponding circulant
matrix Θ in the matrix-vector multiplication Θx as follows,

θ = (1,−w1,−w2, · · · ,−wT−1)
⊤ =

[
1

−w

]
, (10)

and

Θ =




1 −wT−1 −wT−2 · · · −w1

−w1 1 −wT−1 · · · −w2

−w2 −w1 1 · · · −w3

...
...

...
. . .

...
−wT−1 −wT−2 −wT−3 · · · 1



, (11)

respectively. Due to the property of circulant matrix, the
temporal kernel θ is indeed the first column of matrix Θ.

As mentioned above, the temporal kernel θ can be rein-
forced for capturing local and nonlocal correlations of time
series automatically. Using the structure of θ described in
Eq. (10), the problem (6) is equivalent to

min
w≥0

∥x−Aw∥22
s.t. ∥w∥0 ≤ τ, τ ∈ Z+,

(12)

where the auxiliary matrix A is comprised of the last T − 1
columns of the circulant matrix C(x) ∈ RT×T (see Eq. (5)),
namely,

A =




xT xT−1 xT−2 · · · x2

x1 xT xT−1 · · · x3

x2 x1 xT · · · x4

...
...

...
. . .

...
xT−2 xT−3 xT−4 · · · xT

xT−1 xT−2 xT−3 · · · x1



∈ RT×(T−1). (13)

As can be seen, one of the most intriguing properties is
the circular convolution θ ⋆ x can be converted into the
expression x−Aw, which takes the form of linear regression,
as illustrated in Figure 3. Thus, our problem aligns with sparse
linear regression on the data pair {x,A} in Figure 2, if not
mentioning the non-negativity constraint.

2) Solution Algorithm: To solve the optimization problem
in Eq. (12), one should consider both non-negativity and
sparsity of the vector w. In this study, we present Algorithm 1
as the implementation using an NNSP method that adapted
from [18], where non-negative least squares is treated as a
subroutine. The temporal kernel θ is constructed using the τ -
sparse representation w (see Eq. (10)). Here, S = supp(w) =
{t : wt ̸= 0} represents the support set of the vector w,

x ∈ RT

≈

A ∈ RT×(T−1)

×

w ∈ RT−1

︸
︷︷

︸

∥w∥0 ≤ τ

Time series Dictionary matrix
τ -sparse

representation

Fig. 3. Illustration of learning τ -sparse vector w from the time series data
x with the constructed formula as x ≈ Aw. The T -by-(T − 1) dictionary
matrix A is constructed by the time series x, see Eq. (13).

with |S| denoting the cardinality of S. Notably, we compute
a⊤
i r, ∀i ∈ [T − 1], where the vector ai is defined as

ai = (xT−i+1, · · · , xT , x1, · · · , xT−i)
⊤ ∈ RT , (14)

where the entries of the first phase start from xT−i+1 to xT ,
as the remaining T − i entries start from x1 to xT−i. Such
structure is consistent with the matrix A in Eq. (13).

Algorithm 1 Estimating w with NNSP
1: Input: Time series x ∈ RT , and sparsity level τ of the

sparse representation w.
2: Initialize the vector w := 0 as zeros, the support set S :=

∅ as an empty set, and the error r := x.
3: while not converged do
4: Find ℓ as the index set of the τ largest entries of |A⊤r|

in which A⊤r = (a⊤
1 r1,a

⊤
2 r2, · · · ,a⊤

T−1rT−1)
⊤.

5: Update the support set S := S ∪ {ℓ}.
6: Update the sparse vector wS := argmin

v≥0
∥x−ASv∥22

with non-negative least squares.
7: Update the support set S as the index set of the τ largest

entries of |w|.
8: Set wi = 0 for all i /∈ S.
9: Update the sparse vector wS := argmin

v≥0
∥x−ASv∥22

with non-negative least squares.
10: Update the error vector r := x−ASwS .
11: end while
12: Return the τ -sparse representation w.

In the meantime, let the support set S = {ℓ1, ℓ2, . . . , ℓ|S|}
represent a sequence of indices, the corresponding sampling
matrix AS ∈ RT×|S| is given by

AS =




| | |
aℓ1 aℓ2 · · · aℓ|S|

| | |


 , (15)

with the following column vectors:

aℓ1 = (xT−ℓ1+1, · · · , xT , x1, · · · , xT−ℓ1)
⊤,

aℓ2 = (xT−ℓ2+1, · · · , xT , x1, · · · , xT−ℓ2)
⊤,

...

aℓ|S| = (xT−ℓ|S|+1, · · · , xT , x1, · · · , xT−ℓ|S|)
⊤.

(16)
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Thus, it suffices to compute the linear transformation

ASwS =
∑

ℓ∈S

wℓaℓ, (17)

in a memory-efficient manner. Since the matrix A is derived
from the circulant matrix C(x), it is possible to avoid explicitly
constructing a memory-consuming matrix of size T × (T −1).
In some extreme cases, where the time series is particularly
long, directly computing with T × (T − 1) matrices becomes
challenging.

B. On Multivariate Time Series

1) Model Description: For univariate time series, a τ -
sparse representation w ∈ RT−1 can effectively capture
temporal correlations and patterns. However, for multivariate
time series, the case becomes more complicated because it
is unnecessary to learn a separate τ -sparse representation for
each individual time series. Instead, a single sparse vector
w ∈ RT−1 is expected to capture consistent correlations and
patterns across all time series. For any multivariate time series
X ∈ RN×T , where N and T are the number and the length of
time series, respectively, the learning process of the temporal
kernel θ can be formulated as follows,

min
w≥0

∑

n∈[N ]

∥θ ⋆ xn∥22

s.t.




θ =

[
1

−w

]
,

∥w∥0 ≤ τ, τ ∈ Z+,

(18)

where xn ∈ RT is the n-th row vector of X , corresponding
to a single time series. In the objective function, according
to the property of circular convolution in Eq. (4), the circular
convolution takes the following form:

θ ⋆ xn = C(xn)θ = xn −Anw, (19)

with An ∈ RT×(T−1) consisting of the last T − 1 columns of
the circulant matrix C(xn). By constructing the matrix An for
each time series xn independently, we propose representing
An, n ∈ [N ] as slices of a newly constructed tensor A ∈
RN×T×(T−1). Equivalently, we have

min
w≥0

∥X −A×3 w
⊤∥2F

s.t. ∥w∥0 ≤ τ, τ ∈ Z+,
(20)

where ×3 denotes the modal product along the third mode,
namely, mode-3 product. In this case, we have a linear
regression with known time series matrix X and dictionary
tensor A. The regression expression is particularly written
with the modal product.

Figure 4 illustrates the modal product between any third-
order tensor A ∈ Rn1×n2×m and a matrix W ∈ Rm×n3 .
The resulting tensor X will have dimensions n1 × n2 × m
by following standard tensor computation principles (see [29],
[30] for detailed definitions). If the matrix W is reduced
to a row vector, such as the sparse representation w⊤ of
length T − 1, then the entries of resulting matrix represent
the inner product between the tensor fibers and the vector

w. In the context of Eq. (20), the tensor A is of size
N×T×(T−1), while the matrix X is of size N×T , allowing
for seamless construction of the modal product according to
the multiplication principle.

X ∈ Rn1×n2×m A ∈ Rn1×n2×n3 W ∈ Rm×n3

n2

︸ ︷︷ ︸

n
1

︸
︷︷

︸ m︸
︷︷

︸

yi1,i2,j
i1

i2
j =

n2

︸ ︷︷ ︸

n
1

︸
︷︷

︸ n 3︸
︷︷

︸
Ai1,i2,:

i1

i2
×3

n3

︸ ︷︷ ︸

m

︸
︷︷

︸

wj

j

Fig. 4. Illustration of the modal product between a third-order tensor and
a matrix. By definition, the entry of resulting tensor X is the inner product
between tensor fiber (i.e., in the form of a vector) of A and row vector of
W [29], [30].

By utilizing the properties of tensor unfolding and modal
product as described in [29], the optimization problem in
Eq. (20) can be equivalently expressed as the following one:

min
w≥0

∥ vec(X)−A⊤
(3)w∥22

s.t. ∥w∥0 ≤ τ, τ ∈ Z+,
(21)

where vec(·) denotes the vectorization operator. In tensor
computations, A(3) is the tensor unfolding of A at the third di-
mension, resulting in A(3) having dimensions (T−1)×(NT ).
As can be seen, the original regression problem in Eq. (20) is
actually converted into a standard sparse regression problem
that is analogous to Eq. (12). Consequently, the previously
mentioned algorithm can be applied to the multivariate time
series case.

2) Solution Algorithm: Before using Algorithm 1, it is
necessary to adjust the algorithm settings. There are some
procedures to follow: 1) Set x := vec(X) ∈ RNT as the
input. 2) Compute the inner product a⊤

i r, ∀i ∈ [T −1], where
we have

ai =
(
x⊤
T−i+1, · · · ,x⊤

T ,x
⊤
1 , · · · ,x⊤

T−i

)⊤ ∈ RNT , (22)

where xt ∈ RN , t ∈ [T ] are the column vectors of X ∈
RN×T . In the vector ai, the entries of the first phase start from
xT−i+1 to xT , as the remaining N(T − i) entries start from
x1 to xT−i. Notably, this principle is analogous to Eq. (14).

Finally, suppose S = {ℓ1, ℓ2, . . . , ℓ|S|} be the support set,
then the most important procedure is constructing the sampling
matrix AS ∈ R(NT )×|S|, which consists of the selected
columns of A⊤

(3) ∈ R(NT )×(T−1) corresponding to the index
set S. This matrix is given by

AS =




| | |
aℓ1 aℓ2 · · · aℓ|S|

| | |


 . (23)

In this case, if i ∈ S represents the index i in the support set
S, then constructing ai in Eq. (22) allows one to build the
column vectors of AS .
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C. On Multidimensional Time Series

For any multidimensional time series X ∈ RM×N×T in
the form of a tensor, we use the tensor fiber Xm,n,: ∈ RT

to represent each individual time series of length T . The
challenge is to learn a temporal kernel θ from matrix-variate
time series. To address this, we propose formulating the
circular convolution as θ⋆Xm,n,: over m ∈ [M ] and n ∈ [N ].
Consequently, the optimization problem can be written as
follows,

min
w≥0

∑

m∈[M ]

∑

n∈[N ]

∥θ ⋆Xm,n,:∥22

s.t.




θ =

[
1

−w

]
,

∥w∥0 ≤ τ, τ ∈ Z+,

(24)

where the temporal kernel θ ∈ RT is defined such that the first
entry is 1 and the remaining T −1 entries are −w. Therefore,
the optimization problem now becomes

min
w≥0

∥X −A×4 w
⊤∥2F

s.t. ∥w∥0 ≤ τ,
(25)

where A ∈ RM×N×T×(T−1) is a fourth-order tensor con-
structed from X . Specifically, the circulant matrix is defined
for each time series Xm,n,: independently. Thus, the problem
takes the form of tensor regression with known variables being
tensors. By utilizing the properties of tensor unfolding and
modal product, we can find an equivalent optimization as
follows,

min
w≥0

∥ vec(X )−A⊤
(4)w∥22

s.t. ∥w∥0 ≤ τ,
(26)

where the vectorization on the third-order tensor X is
vec(X ) = vec(X(1)) with the tensor unfolding of X at the
first dimension being X(1) ∈ RM×(NT ). The matrix A(4) is
the tensor unfolding of A at the fourth dimension, which is
of size (T − 1)× (MNT ).

As mentioned above, the optimization problem can be
converted into an equivalent sparse regression on data pair
{vec(X),A⊤

(4)} using vectorization and tensor unfolding op-
erations. In the algorithmic implementation, the vector ai ∈
RMNT used in inner product a⊤

i r, ∀i ∈ [T−1] can be defined
as follows,

ai =
(
vec(XT−i+1)

⊤, · · · , vec(XT )
⊤,

vec(X1)
⊤, · · · , vec(XT−i)

⊤)⊤ ∈ RMNT ,
(27)

where Xt ∈ RM×N , t ∈ [T ] are the frontal slices of the tensor
X ∈ RM×N×T . In this case, we introduce the vectorization
operation to make the vector ai identical to the ith column
of the matrix A⊤

(4) ∈ R(MNT )×(T−1). The essential idea of
constructing ai can be generalized to the column vectors of
AS by letting i ∈ S over a sequence of indices in the support
set S.

V. EXPERIMENTS

In this section, we evaluate the proposed method for learn-
ing convolutional kernels using real-world time series data.
In what follows, we consider several multidimensional time
series datasets, including the ridesharing and taxi trip data
collected from New York City (NYC) and Chicago, which
capture human mobility in urban areas, as well as climate
dataset with strong yearly seasonality and fluid flow dataset
that shows temporal dynamics. We use the fluid flow data
to identify interpretable temporal patterns and support down-
stream machine learning tasks, such as tensor completion in
fluid flow analysis.

A. On Human Mobility Data

Human mobility in urban areas typically exhibits highly
periodic patterns on a daily or weekly basis, with a significant
number of trips occurring during morning and afternoon peak
hours and relatively fewer trips during off-peak hours. The
NYC TLC trip data provides records of ridesharing and taxi
trips projected onto the 262 pickup/dropoff zones across urban
areas.1 Each trip is recorded with spatial and temporal infor-
mation, including pickup time, dropoff time, pickup zone, and
dropoff zone. For privacy concerns, the detailed trajectories
(e.g., latitude and longitude) of ridesharing vehicles and taxis
are removed. By aggregating these trips on an hourly basis,
the trip data can be represented as mobility tensors such as
X of size M × N × T , in which the number of zones is
M = N = 262. For numerical experiments, we choose the
datasets covering the first 8 weeks starting from April 1, 2024.
As a result, the number of time steps is T = 8×7×24 = 1344.

Figure 5 shows the daily average of ridesharing pickup and
dropoff trips across 262 zones in NYC, in which the most
traveled zones include John F. Kennedy International Airport
and LaGuardia Airport. From Figure 6, one can observe a clear
weekly seasonality of ridesharing trips in the time series, with
similar trends recurring across different weeks. Notably, the
airport zones have significantly higher trip counts compared
to other zone, as seen in Figure 5. As shown in Figure 6, we
also extract the pickup and dropoff trips associated with John
F. Kennedy International Airport. The pickup trip time series
shows a distinct trend, peaking every evening, which contrasts
with the dropoff trip time series. Nevertheless, both time series
exhibit weekly periodic patterns. For comparison, we analyze
both ridesharing and taxi trip data to highlight the temporal
patterns in the experiments.

The Chicago Open Data Portal provides the trip records
of ridesharing vehicles and taxis, mapping onto the 77
pickup/dropoff zones within urban areas.2,3 The trip records
can be aggregated into mobility tensors such as X of size
M×N×T , where M = N = 77 for the pickup/dropoff zones.
We consider both ridesharing and taxi data during the first
8 weeks starting from April 1, 2024, comprising T = 1344

1https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page.
2https://data.cityofchicago.org/Transportation/

Transportation-Network-Providers-Trips-2023-/n26f-ihde/about data.
3https://data.cityofchicago.org/Transportation/Taxi-Trips-2024-/ajtu-isnz/

about data.

https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://data.cityofchicago.org/Transportation/Transportation-Network-Providers-Trips-2023-/n26f-ihde/about_data
https://data.cityofchicago.org/Transportation/Transportation-Network-Providers-Trips-2023-/n26f-ihde/about_data
https://data.cityofchicago.org/Transportation/Taxi-Trips-2024-/ajtu-isnz/about_data
https://data.cityofchicago.org/Transportation/Taxi-Trips-2024-/ajtu-isnz/about_data
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Fig. 5. Daily average of ridesharing pickup and dropoff trips during the first 8 weeks since April 1, 2024 in NYC, USA. There are 37,404,265 trips in total,
while the average daily trips are 667,933. With each panel referring to pickup/dropoff trip counts of 262 zones in NYC, the red and yellow zones represent
higher and less daily trip counts, respectively.

(a) Total ridesharing trips over 262 pickup and dropoff zones.

(b) Aggregated ridesharing pickup trips with the origin as John F. Kennedy
International Airport.

(c) Aggregated ridesharing dropoff trips with the destination as John F.
Kennedy International Airport.

Fig. 6. Ridesharing trip time series in the first 3 weeks since April 1, 2024
in NYC, USA.

time steps. As shown in Figure 7, the time series exhibits
clear weekly periodic patterns and consistent time series trends
across different weeks.

In what follows, we use both NYC and Chicago datasets in
the form of tensors to test the proposed method for learning
interpretable convolutional kernels. Table II summarizes the
temporal kernels with different sparsity levels τ = 4 and 6
on both ridesharing and taxi in the two cities. These temporal
kernels reveal the most significant correlations between adja-
cent time steps, such as t = 1 and t = 2 (forward direction) or
t = 1344 (backward direction). The ridesharing/taxi trip data
of Chicago shows stronger local correlations than the NYC
data. When the sparsity level τ is set to 6, the temporal kernel
captures both nearest time steps t = 2, 1344 and time steps

(a) Daily average of pickup and dropoff trips.

(b) Total ridesharing trips over 77 pickup and dropoff zones.

Fig. 7. Ridesharing trips during the first 8 weeks since April 1, 2024 in
the City of Chicago, USA. There are 11,374,540 trips in total, while the
daily average is 203,117 trips. (a) Pickup and dropoff trips over 77 zones. (b)
Aggregated ridesharing trips in the first 3 weeks since April 1, 2024.

related to weekly seasonality, such as t = 169, 337, 1009, 1177
in the NYC ridesharing dataset and t = 337, 673, 1009, 1177
in the Chicago ridesharing dataset. In addition, using a rel-
atively greater τ in the convolutional kernel learning process
contributes to the reduction of loss functions, in which the loss
function corresponds to the objective function in Eq. (24).

Furthermore, it is also meaningful to examine the differ-
ences among the weights {−w1,−w2, · · · ,−wT−1} (i.e., the
last T −1 entries of θ) of the temporal kernels in Table II. On
the one hand, the temporal kernels for these datasets capture
the weekly or bi-weekly seasonality. For instance, the temporal
kernel with τ = 6 for the NYC ridesharing dataset shows
consistent weights for weekly and bi-weekly time steps. On
the other hand, comparing the temporal kernels across the four
different datasets reveals the following findings:

• Comparability of temporal kernels. The local and nonlo-
cal temporal patterns across different datasets are com-
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TABLE II
TEMPORAL KERNEL RESULTS ACHIEVED BY THE PROPOSED METHOD ON THE RIDESHARING AND TAXI TRIP DATASETS IN NYC AND CHICAGO. NOTE

THAT IN THE FIRST COLUMN, “-R” AND “-T” ALONG WITH THE CITY REFER TO THE RIDESHARING AND TAXI, RESPECTIVELY.

Data Sparsity Temporal kernel θ ≜ (1,−w⊤)⊤ ∈ RT Loss function

NYC-R

τ = 4 (1,−0.28︸ ︷︷ ︸
t=2

, 0, · · · , 0,−0.22︸ ︷︷ ︸
t=169

, 0, · · · , 0,−0.22︸ ︷︷ ︸
t=1177

, 0, · · · , 0,−0.28︸ ︷︷ ︸
t=1344

)⊤ 5.51× 107

τ = 6 (1,−0.22︸ ︷︷ ︸
t=2

, 0, · · · , 0,−0.14︸ ︷︷ ︸
t=169

, 0, · · · , 0,−0.14︸ ︷︷ ︸
t=337

, 0, · · · , 0,−0.14︸ ︷︷ ︸
t=1009

, 0, · · · , 0,−0.14︸ ︷︷ ︸
t=1177

, 0, · · · , 0,−0.22︸ ︷︷ ︸
t=1344

)⊤ 5.22× 107

NYC-T

τ = 4 (1,−0.26︸ ︷︷ ︸
t=2

, 0, · · · , 0,−0.23︸ ︷︷ ︸
t=169

, 0, · · · , 0,−0.23︸ ︷︷ ︸
t=1177

, 0, · · · , 0,−0.26︸ ︷︷ ︸
t=1344

)⊤ 9.69× 106

τ = 6 (1,−0.20︸ ︷︷ ︸
t=2

, 0, · · · , 0,−0.15︸ ︷︷ ︸
t=169

, 0, · · · , 0,−0.14︸ ︷︷ ︸
t=673

, 0, · · · , 0,−0.14︸ ︷︷ ︸
t=1009

, 0, · · · , 0,−0.15︸ ︷︷ ︸
t=1177

, 0, · · · , 0,−0.20︸ ︷︷ ︸
t=1344

)⊤ 9.16× 106

Chicago-R

τ = 4 (1,−0.38︸ ︷︷ ︸
t=2

, 0, · · · , 0,−0.13︸ ︷︷ ︸
t=337

, 0, · · · , 0,−0.13︸ ︷︷ ︸
t=1009

, 0, · · · , 0,−0.38︸ ︷︷ ︸
t=1344

)⊤ 3.23× 107

τ = 6 (1,−0.36︸ ︷︷ ︸
t=2

, 0, · · · , 0,−0.09︸ ︷︷ ︸
t=337

, 0, · · · , 0,−0.06︸ ︷︷ ︸
t=673

, 0, · · · , 0,−0.09︸ ︷︷ ︸
t=1009

, 0, · · · , 0,−0.06︸ ︷︷ ︸
t=1177

, 0, · · · , 0,−0.36︸ ︷︷ ︸
t=1344

)⊤ 3.17× 107

Chicago-T

τ = 4 (1,−0.36︸ ︷︷ ︸
t=2

, 0, · · · , 0,−0.15︸ ︷︷ ︸
t=337

, 0, · · · , 0,−0.15︸ ︷︷ ︸
t=1009

, 0, · · · , 0,−0.36︸ ︷︷ ︸
t=1344

)⊤ 1.74× 106

τ = 6 (1,−0.30︸ ︷︷ ︸
t=2

, 0, · · · , 0,−0.10︸ ︷︷ ︸
t=25

, 0, · · · , 0,−0.11︸ ︷︷ ︸
t=337

, 0, · · · , 0,−0.11︸ ︷︷ ︸
t=1009

, 0, · · · , 0,−0.10︸ ︷︷ ︸
t=1321

, 0, · · · , 0,−0.30︸ ︷︷ ︸
t=1344

)⊤ 1.64× 106

parable with respect to the weights of temporal kernels.
Although these datasets exhibit complicated spatiotem-
poral correlations, the intrinsic patterns such as weak
seasonality can be clearly revealed by the proposed
method. For example, the proposed method (τ = 4) learns
the same support set S in the sparse representation w for
the NYC ridesharing and taxi data, while the value of
weights in w are very close.

• Ridesharing and taxi trips in NYC exhibit similar
strengths of weekly seasonality, with the sum of nonlocal
weights (τ = 6) being −0.56 for the ridesharing dataset
against −0.58 for the taxi dataset.

• Taxi trips in Chicago show stronger weekly seasonality
than ridesharing trips, as the sum of nonlocal weights
(τ = 4) is −0.30 for the taxi dataset, compared to −0.26
for the ridesharing dataset.

• Taxi trips in Chicago reveal both daily and weekly
seasonality when τ = 6, with the sum of nonlocal weights
being −0.42 on the taxi dataset, compared to −0.30 for
the ridesharing dataset, indicating stronger seasonality in
taxi trips.

• NYC trip datasets display stronger seasonality than
Chicago trip datasets. For instance, when τ = 6, the
sums of nonlocal weights of NYC ridesharing, NYC taxi,
Chicago ridesharing, and Chicago taxi are −0.56, −0.58,
−0.30, and −0.42, respectively. Similar evidence is seen
with τ = 4, where the sum of nonlocal weights is −0.44
for the NYC ridesharing dataset, compared to −0.26 for
the Chicago ridesharing dataset.

Therefore, the absolute values of nonlocal weights in the
temporal kernels provide a way to measure the periodicity
of urban human mobility across different cities and various
transportation modes, such as ridesharing vehicles and taxis.
Since the kernel learning mechanism automatically captures
temporal correlations and patterns, these temporal kernels offer

valuable insights into real-world systems. Given the consistent
settings, such as time periods and transportation modes used in
selecting the datasets, the findings discussed above are crucial
for policymaking in urban systems.

TABLE III
THE LOCAL AND NONLOCAL COEFFICIENTS IN THE SPARSE

REPRESENTATION w ∈ RT−1 ON THE NYC RIDESHARING DATASETS
FROM 2019 TO 2024. NOTE THAT THE SPARSITY LEVEL IS SET AS τ = 4.

Year Support set S = {ℓ1, ℓ2, . . . , ℓ|S|}
1 24 168 336 1008 1176 1320 1343

2019 0.27 0 0.22 0 0 0.22 0 0.27
2020 0 0.23 0.23 0 0 0.23 0.23 0
2021 0 0 0.24 0.23 0.23 0.24 0 0
2022 0.26 0 0.23 0 0 0.23 0 0.26
2023 0.27 0 0.22 0 0 0.22 0 0.27
2024 0.28 0 0.22 0 0 0.22 0 0.28

For complementary needs, Table III summarizes the τ -
sparse representation w ∈ R1343 achieved by the proposed
method on the NYC ridesharing data from the first 8 weeks
starting April 1st across different years. The results show
consistent temporal correlations in 2019, 2022, 2023, and
2024. Specifically, local time steps and weekly seasonality
are observed in the support set S = {1, 168, 1176, 1343},
with the entries of w being remarkably consistent across
these years. In 2020, the τ -sparse representation reveals
both daily and weekly seasonality in the support set S =
{24, 168, 1176, 1320}, significantly differing from 2019 due
to the impact of the COVID-19 pandemic. In 2021, the
τ -sparse representation also highlights strong nonlocal pat-
terns such as weekly seasonality in the support set S =
{168, 336, 1008, 1176}. These findings imply that NYC
ridesharing trips exhibit more periodic patterns during the
COVID-19 years.
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TABLE IV
THE LOCAL AND NONLOCAL COEFFICIENTS IN THE SPARSE REPRESENTATION w ∈ RT−1 ON THE NORTH AMERICA TEMPERATURE DATASETS IN THE

PAST FOUR DECADES. NOTE THAT THE SPARSITY LEVEL IS SET AS τ = 6.

Data Support set S = {ℓ1, ℓ2, . . . , ℓ|S|}
1 12 24 36 48 60 72 84 96 108 119

1980s 0 0.187 0 0.140 0.171 0 0.171 0.140 0 0.187 0
1990s 0.209 0.146 0.154 0 0 0 0 0 0.154 0.146 0.209
2000s 0.138 0.202 0 0 0.158 0.185 0 0 0 0.189 0.137
2010s 0.202 0.169 0 0 0 0.137 0.123 0 0 0.183 0.202

B. On North America Temperature Data
Daymet provides monthly climate variables such as maxi-

mum temperature with a high spatial resolution.4 In this study,
we use the temperature time series data from January 1980 to
December 2019 (see e.g., Figure 8) and evaluate the proposed
model on the dataset of each decade independently. Table IV
shows the τ -sparse representation w ∈ R119 with τ = 6. The
coefficients of yearly seasonality at index t = 12 reveal more
seasonal temperatures in 2000s and less seasonal temperatures
in 1990s against other decades. The coefficients w1 for 1990s
and 2010s capture strong local correlations. In addition to the
indices t = 1 and t = 119, the remaining indices in the
support set are all related to the yearly seasonality, making
these coefficients meaningful for climate system monitoring.

(a) January (b) February

(c) March (d) April

Fig. 8. Monthly temperature time series in North America with a spatial
resolution of 10 km × 10 km. (a-d) refer to the first four months of 2019.

C. On Fluid Flow Data
1) Learning Convolutional Kernels: The dynamics of fluid

flow often exhibit complicated spatiotemporal patterns, al-
lowing one to interpret convolutional kernels in the context

4https://daac.ornl.gov/DAYMET

of temporal dynamics. We use a fluid flow dataset collected
from the fluid flow passing a circular cylinder with laminar
vortex shedding at Reynolds number, using direct numerical
simulations of the Navier-Stokes equations.5 This dataset is a
multidimensional tensor of size 199×449×150, representing
199-by-449 vorticity fields with 150 time snapshots as shown
in Figure 9.

Table V summarizes the temporal kernels achieved by Algo-
rithm 1 on the fluid flow dataset with different sparsity levels
τ = 2, 3, 4. When τ = 2, the temporal kernel θ primarily
captures local correlations between the nearest time snapshots.
As the sparsity level increases to τ = 3, 4, the temporal
kernels also capture seasonal patterns at t = 31, 121, reflecting
cyclical temporal dynamics in addition to local correlations
at t = 2, 150. These temporal kernels enable the correlation
of time snapshots in fluid flow data, it is therefore important
to examine the significance of convolutional kernels in ten-
sor factorization for addressing the fluid flow reconstruction
problem.

2) Fluid Flow Reconstruction with Tensor Factorization:
For any partially observed tensor Y ∈ RM×N×T in the form
of multidimensional time series, we consider the problem of
fluid flow reconstruction using CP tensor factorization which
is a classical formula in tensor computations [29], [30]. To
emphasize the significance of learning convolutional kernels
from time series data, we reformulate the optimization problem
of tensor factorization by incorporating spatiotemporal regu-
larization terms such that

min
W ,U ,V

1

2

∥∥PΩ

(Y(1) −W (V ⊙U)⊤
)∥∥2

F

+
γ

2

(
∥ΘwW ∥2F + ∥ΘuU∥2F + ∥ΘvV ∥2F

)
,

(28)

where Y(1) is the mode-1 tensor unfolding of size M×(NT ),
and Ω denotes the observed index set of Y(1). Since the
data is partially observed, PΩ(·) denotes the orthogonal pro-
jection supported on Ω, while P⊥

Ω (·) denotes the orthogonal
projection supported on the complement of Ω. In this tensor
factorization, given a rank R ∈ Z+, there are three factor
matrices W ∈ RM×R, U ∈ RN×R, and V ∈ RT×R.
Accordingly, if one accounts for the temporal correlations,
the matrix Θv ∈ RT×T is the circulant matrix with the
first column being the temporal kernel θv ∈ RT . Instead of
temporal kernel θv , the proposed method can also learn the
spatial kernels θw and θu from the fluid flow data. Thus, one
can construct the spatial regularization terms with matrices

5http://dmdbook.com/.

https://daac.ornl.gov/DAYMET
http://dmdbook.com/
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Fig. 9. Matrix-variate time snapshots of the fluid flow dataset. This fluid flow dataset has the seasonality ∆t = 30. To demonstrate the periodic patterns, the
time snapshots since t = 121 are also presented.

TABLE V
TEMPORAL KERNEL RESULTS ACHIEVED BY THE PROPOSED METHOD ON THE FLUID FLOW DATASET.

Sparsity Temporal kernel θ ≜ (1,−w⊤)⊤ ∈ RT Loss function Correlation

τ = 2 (1,−0.50︸ ︷︷ ︸
t=2

, 0, · · · , 0,−0.50︸ ︷︷ ︸
t=150

)⊤ 2.49× 104 Local

τ = 3 (1,−0.40︸ ︷︷ ︸
t=2

, 0, · · · , 0,−0.21︸ ︷︷ ︸
t=121

, 0, · · · , 0,−0.40︸ ︷︷ ︸
t=150

)⊤ 2.10× 104 Local & nonlocal

τ = 4 (1,−0.35︸ ︷︷ ︸
t=2

, 0, · · · , 0,−0.16︸ ︷︷ ︸
t=31

, 0, · · · , 0,−0.16︸ ︷︷ ︸
t=121

, 0, · · · , 0,−0.35︸ ︷︷ ︸
t=150

)⊤ 1.91× 104 Local & nonlocal

Θw ∈ RM×M and Θu ∈ RN×N . Notably, these regularization
terms are weighted by γ ∈ R.

The optimization problem in Eq. (28) can be solved by
the alternating minimization method, in which the variables
{W ,U ,V } would be updated iteratively with the following
principle:





W := {W | ∂f/∂W = 0},
U := {U | ∂f/∂U = 0},
V := {V | ∂f/∂V = 0},

(29)

where the objective function is denoted by f . Each subproblem
can be resolved by the conjugate gradient method efficiently
[34].

In Table VI, we randomly generate missing entries with
certain missing rates as 50%, 70%, and 90% in the fluid
flow X and construct a partially observed tensor Y as
the input for tensor factorization. We denote the estimated
tensor by Ŷ and use the relative squared error as RSE =
∥P⊥

Ω (Ŷ−X )∥F /∥P⊥
Ω (X )∥F ×100 to measure the imputation

performance. To highlight the importance of convolutional
kernels, we consider the rank as R = 100 in different settings
of tensor factorization:

• (TF). Tensor factorization with γ = 0, implying no
regularization term.

• (TF-θv). Tensor factorization with the convolutional ker-
nel θv ∈ RT in which the sparsity level is τ = 4 as shown
in Table V. Herein, the weight is set as γ = 1× 103.

• (TF-{θw,θv}). Tensor factorization with the convolu-
tional kernels θw ∈ RM of sparsity level τ = 2 and

θv ∈ RT of sparsity level τ = 4. Here, the weight is set
as γ = 1× 101.

• (TF-{θu,θv}). Tensor factorization with the convolu-
tional kernels θu ∈ RN of sparsity level τ = 2 and
θv ∈ RT of sparsity level τ = 4. Here, the weight is set
as γ = 1× 101.

• (TF-{θw,θu,θv}). Tensor factorization with convolu-
tional kernels {θw,θu,θv} in which the spatial kernels
θw ∈ RM and θu ∈ RN are with sparsity level τ = 2
and the temporal kernel θv ∈ RT is with sparsity level
τ = 4. Here, the weight is set as γ = 1× 10−4.

Of the results in Table VI, the tensor factorization with
temporal kernel θv performs better than the purely tensor
factorization, highlighting the importance of temporal kernels.
As we have multiple kernel settings in tensor factorization,
the performance of fluid flow reconstruction can be further
improved when introducing spatial kernels such as θw and θu

along the spatial dimensions of fluid flow data.

VI. CONCLUDING REMARKS

A. Technical Limitations

This work uses NNSP to solve the optimization problem
of learning sparse temporal kernels from univariate (i.e.,
Eq. (12)), multivariate (i.e., Eq. (21)), and multidimensional
(i.e., Eq. (26)) time series. Although NNSP has a fast im-
plementation, it is difficult to guarantee the solution quality
compared with mixed-integer programming (MIP) algorithms
[35]–[38]. In problem (6), one can introduce binary decision
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TABLE VI
PERFORMANCE (RSE) OF THE FLUID FLOW RECONSTRUCTION WITH
TENSOR FACTORIZATION METHODS. THE MISSING VALUES WITH A

CERTAIN MISSING RATE ARE GENERATED 20 TIMES WITH DIFFERENT
RANDOM SEEDS, WHILE THE RESULTS ARE GIVEN IN AVERAGE AND

STANDARD DEVIATION OF RSES.

Model Missing rate

50% 70% 90%

TF 2.30± 0.10 2.43± 0.14 3.40± 0.23
TF-θv 2.26± 0.10 2.40± 0.13 3.29± 0.17
TF-{θw,θv} 2.27± 0.10 2.21± 0.11 2.64± 0.13
TF-{θu,θv} 2.30± 0.10 2.42± 0.14 3.24± 0.20
TF-{θw,θu,θv} 2.22± 0.12 2.24± 0.11 2.64± 0.21

variables to the optimization and formulate an equivalent MIP
problem such that

min
w,β

∥x−Aw∥22

s.t.





0 ≤ w ≤ β, β ∈ {0, 1}T−1,∑

t∈[T−1]

βt ≤ τ, τ ∈ Z+,

(30)

which can be solved by MIP solvers. Take the first two-week
time series of Figure 1 as an example, both MIP solver and
NNSP produce the temporal kernel θ ≜ (1,−w⊤)⊤ ∈ RT

with
w = (0.34︸︷︷︸

t=1

, · · · , 0.33︸︷︷︸
t=168

, · · · , 0.34︸︷︷︸
t=335

)⊤, (31)

where the sparsity level is set as τ = 3 and objective function
in Eq. (30) is 7.675× 107. This result basically demonstrates
both local and nonlocal temporal patterns. However, in the case
of τ = 5, while the resulting w of NNSP is same as Eq. (31),
the MIP solver produces a more interpretable temporal kernel
θ in which w is given by

w = (0.33︸︷︷︸
t=1

, · · · , 0.004︸ ︷︷ ︸
t=24

, · · · , 0.33︸︷︷︸
t=168

, · · · , 0.004︸ ︷︷ ︸
t=312

, · · · , 0.33︸︷︷︸
t=335

)⊤,

(32)
which includes nonlocal correlations in a daily cycle. Here,
the objective function of Eq. (30) is 7.665 × 107, showing
the impact of sparsity constraints (i.e., the sparsity level
switching from 3 to 5) for minimizing the objective function.
Notably, the objective function of MIP is slightly smaller than
NNSP. The essential idea of formulating MIP problems can
be easily adapted to multivariate and multidimensional time
series. Nevertheless, the computational cost of MIP is always
a great technical concern [39], demanding efficient data-driven
optimization for identifying the sparsity patterns of temporal
kernels and reducing the search space. This direction is still
meaningful for future exploration.

B. Conclusion

In this study, we propose a unified machine learning frame-
work for temporal convolutional kernel learning to model
univariate, multivariate, and multidimensional time series data
and capture interpretable temporal patterns. Specifically, the
optimization problem for learning temporal kernels is formu-
lated as a linear regression with τ -sparsity (i.e., using ℓ0-norm

on the sparse representation w) and non-negativity constraints.
The temporal kernel θ takes the first entry as one and the
remaining entries as −w. To ensure the interpretable temporal
kernels, the constraints in optimization are solved by the NNSP
method, which is well-suited to produce a sparse and non-
negative sparse representation w.

In the modeling process, the challenge arises as the time
series switched from univariate cases to multivariate and even
multidimensional cases due to the purpose of learning a single
kernel θ from a sequence of time series. To address this,
we propose formulating the optimization problem with tensor
computations, involving both modal product and tensor unfold-
ing operations in tensor computations. Eventually, we show
that the optimization for multivariate and multidimensional
time series can be converted into an equivalent sparse re-
gression problem. Thus, the NNSP method can be seamlessly
adapted for solving these complex optimization problems.

Through evaluating the proposed method on the real-world
human mobility data, we show the interpretable temporal
kernels for characterizing multidimensional ridesharing and
taxi trips in both NYC and Chicago, allowing one to uncover
the local and nonlocal temporal patterns such as weekly
periodic seasonality. The comparison between different cities
and transportation modes provides insightful evidence for
understanding the periodicity of urban systems. On the climate
data, the yearly seasonality of temperature that changed over
past four decades is meaningful for climate system monitoring.
On the fluid flow data, convolutional kernels that obtained
along spatial and temporal dimensions can reinforce the tensor
completion in fluid flow reconstruction problems.
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