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Laplacian Convolutional Representation for
Traffic Time Series Imputation
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Abstract—Spatiotemporal traffic data imputation is of great significance in intelligent transportation systems and data-driven
decision-making processes. To perform efficient learning and accurate reconstruction from partially observed traffic data, we assert the
importance of characterizing both global and local trends in time series. In the literature, substantial works have demonstrated the
effectiveness of utilizing the low-rank property of traffic data by matrix/tensor completion models. In this study, we first introduce a
Laplacian kernel to temporal regularization for characterizing local trends in traffic time series, which can be formulated as a circular
convolution. Then, we develop a low-rank Laplacian convolutional representation (LCR) model by putting the circulant matrix nuclear
norm and the Laplacian kernelized temporal regularization together, which is proved to meet a unified framework that has a fast Fourier
transform (FFT) solution in log-linear time complexity. Through extensive experiments on several traffic datasets, we demonstrate the
superiority of LCR over several baseline models for imputing traffic time series of various time series behaviors (e.g., data noises and
strong/weak periodicity) and reconstructing sparse speed fields of vehicular traffic flow. The proposed LCR model is also an efficient
solution to large-scale traffic data imputation over the existing imputation models.

Index Terms—Spatiotemporal traffic data, time series imputation, low-rank models, circulant matrix nuclear norm, Laplacian
kernelized regularization, circular convolution, discrete Fourier transform, fast Fourier transform

✦

1 INTRODUCTION

M ISSING data imputation is a fundamental component
to a wide range of applications in intelligent trans-

portation systems (ITS), including route planning, travel
time estimation, and traffic flow forecasting. Typically, traffic
data can be collected by sensors (e.g., loop detectors and
video cameras) on a continuous basis, producing a sequence
of traffic flow time series such as speed and volume mea-
surements. However, the real-world ITS often suffers from
various operational issues such as sensor failure and net-
work communication disorder, leading to data corruption
and sparsity. Making accurate recovery of these data is
vital for supporting ITS, but it still demands appropriate
imputation approaches.

The basic modeling idea of missing data imputation in
traffic time series is to exploit complicated spatial and tem-
poral correlations/dependencies from partial observations,
consequently leading to extensive data-driven approaches
such as low-rank models [1] and deep learning methods [2],
[3]. Typically, traffic flow data always show strong global
and local trends with long- and short-term patterns [4].
The global trends usually refer to as certain periodic and
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cyclical patterns, which can be well characterized by low-
rank models. Unfortunately, conventional low-rank models
fail to characterize the time series dynamics because the
reconstruction of low-rank models (e.g., low-rank matrix
completion (LRMC) [5], [6]) is invariant to the permuta-
tion of rows and columns. Thus, recent studies presented
low-rank time series completion models based on certain
algebraic structures, including Hankel matrices/tensors [7],
[8], [9], circulant matrices/tensors [10], [11], and convolu-
tion matrices [11], [12]. The sequential dependencies are
implicitly captured by these structures when characterizing
the low-rank property of time series. However, low-rank
Hankel/convolution models are always limited to small-
or middle-scale problems due to the large size of algebraic
structures. Although circulant matrix nuclear norm mini-
mization (CircNNM) can be efficiently solved through the
fast Fourier transform (FFT), circulant matrices are restricted
and fail to characterize the local trends of time series [11].

The default structure of most low-rank models—rank
minimization whose objective is essentially converted into
the nuclear norm minimization and takes a singular value
thresholding [5], [6]—does not ensure local smoothness.
Thus, it requires us to model both global and local trends in
a unified framework. In the literature, there are several ways
to characterize the local spatial and temporal dependencies
in data-driven machine learning models. For example, on
the spatial dimension, Laplacian regularization has become
a standard technique to impose local consistency (see e.g.,
[13], [14]). On the temporal dimension, the local smoothness
is often characterized using time series smoothing and au-
toregression explicitly (see e.g., [15], [16], [17]). Considering
the importance of temporal regularization in regulating the
behavior of global low-rank models, we are inspired to
develop a tailored regularization for CircNNM to reinforce
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local trends while maintaining the algorithm’s efficiency
through FFT. Thus, using the fact that the Laplacian matrix
of a circulant graph is a circulant matrix, we first introduce
a novel temporal regularization to CircNNM. Next, we de-
velop an efficient algorithm to solve the proposed Laplacian
convolutional representation (LCR) using the alternating
direction method of multipliers (ADMM). The contribution
of this work is three-fold:

• We introduce a circular Laplacian kernel and use it
to define a temporal regularization for characterizing
the local trends in time series. By doing so, the tem-
poral regularization can be formulated with circular
convolution and draw the connection with FFT.

• We propose a low-rank completion model—LCR—
by characterizing global trends of sparse traffic time
series as the nuclear norm of a circulant matrix and
modeling local trends by the temporal regularization
simultaneously. According to the properties of the
circulant matrix and circular convolution, we present
a fast implementation of LCR through FFT.

• We empirically verify the importance of temporal
regularization in LCR. Further, due to the fast imple-
mentation via FFT with log-linear time complexity,
LCR is scalable to large imputation problems. The
experimental results demonstrate that LCR performs
better than the state-of-the-art baseline methods in
terms of both accuracy and efficiency.

In practice, there is often a significant gap between
accurate estimation and efficient implementation in the
substantial imputation methods due to methodological chal-
lenges. For instance, while introducing algebraic structures
[7], [10], [12], [11] or spatiotemporal smoothness [18], [16]
usually enhances accuracy, these approaches often come
with a significantly higher computational cost. To address
this gap, this work advances low-rank completion methods
in the following ways. (i) The basic modeling idea of LCR
stems from CircNNM [11], [12], but LCR reinforces local
time series trends with temporal regularization. (ii) LCR
advances convolution nuclear norm minimization (Con-
vNNM, capable of global/local trend modeling depending
on the kernel size) [11], [12] with a flexible time series
modeling mechanism. (iii) LCR follows an efficient FFT
implementation as CircNNM, while FFT cannot be used in
ConvNNM (see e.g., Fig. 3(a) for the computational cost).
(iv) The flipping operation (see Fig. 7) in LCR addresses the
issue caused by the correlation between the start and end
data points of the time series.

The remainder of this paper is structured as follows. Sec-
tion 2 and 3 introduce the related work and some basic con-
cepts, respectively. In Section 4, we integrate the temporal
regularization into low-rank models for characterizing both
global and local trends in traffic time series. Section 5 and
Section 6 conduct imputation experiments on several real-
world datasets. Finally, we conclude this study in Section 7.

2 RELATED WORK

2.1 Low-Rank Completion with Algebraic Structures
Recent studies show great interest in time series completion
with certain algebraic structures, e.g., the Hankel and cir-
culant matrices. These approaches overcome some critical

limitations of pure LRMC models, e.g., (i) LRMC is inca-
pable of handling the entire row/column missing, (ii) LRMC
is invariant to the permutation of rows/columns, and (iii)
LRMC is not applicable to the case of univariate time series.
For example, the model developed by Yokota et al. [7] can
recover the missing slices of tensor using Hankel structure.
Sedighin et al. [19] applied the tensor train decomposition to
tensors obtained by multi-way Hankel structures and found
better completion performance. In both studies, the low-
rank methods on Hankel structures—replicating the data
with certain sliding rules—are well-suited to modeling spa-
tiotemporal dependencies and learning from sparse data.

A critical property of a circulant matrix is that its nuclear
norm can be efficiently obtained via FFT. Using this prop-
erty, Yamamoto et al. [10] proposed a fast tensor completion
method; Liu and Zhang [11] used the nuclear norm mini-
mization of circulant matrices for missing data recovery and
time series forecasting. Despite the fast algorithm for the
circulant matrix, circulant-matrix-based models are inade-
quate in capturing the local trend/continuity in time series.
Therefore, the ConvNNM model shows better local trends
modeling if the kernel size of the convolution matrix is set
as a relatively small value [11]. Further, Liu [12] proposed a
learnable and orthonormal transformation for ConvNNM to
reinforce its modeling ability when the convolutional low-
rankness condition is not fully satisfied.

2.2 Imputation with Temporal Modeling
In the literature, considerable research has leveraged tempo-
ral dynamics in low-rank models for time series imputation.
A common assumption among these models is that time
series and their low-rank factors have local dependencies.
Chen and Cichocki [20] proposed a Toeplitz-matrix-based
regularization to impose temporal smoothness in matrix
factorization; the regularizer handles the difference between
the low-rank factors of consecutive times. A similar regular-
izer based on the Toeplitz matrix was used by [21] for traffic
data reconstruction. Chen et al. [22] applied a quadratic
variation (QV) to a traffic tensor completion problem to en-
sure temporal smoothness. For modeling low-dimensional
temporal dynamics, Xiong et al. [15] formulated a Bayesian
tensor factorization with first-order Markovian assumptions
on the temporal factors. Yu et al. [16] developed a temporal
autoregressive regularizer in matrix factorization. Chen et al.
[23] developed a low-rank autoregressive tensor completion
model for traffic data imputation. While these two works
assume the univariate autoregression, Chen and Sun [1] ap-
plied a vector autoregression on the latent temporal factors
and developed a fully Bayesian model for multidimensional
and sparse time series prediction. As Laplacian regulariza-
tion is of broad use in graph modeling, it is also applicable to
temporal modeling. For example, Rao et al. [24] proposed a
matrix completion algorithm with Laplacian regularization.
To the best of our knowledge, we are the first to present a
Laplacian kernelized temporal regularization with circular
convolution which consequently leads to the use of FFT.

3 PRELIMINARIES

In this section, we introduce the basic definitions of the cir-
culant matrix, convolution matrix, and circular convolution,
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in the meanwhile summarizing their relationships.

3.1 Circulant Matrix
The circulant matrix is an important structure that shows
broad use in the field of signal processing [25], [26]. By
definition, for any vector x = (x1, x2, · · · , xT )

⊤ ∈ RT , the
circulant matrix can be written as follows,

C(x) ≜


x1 xT xT−1 · · · x2

x2 x1 xT · · · x3

x3 x2 x1 · · · x4

...
...

...
. . .

...
xT xT−1 xT−2 · · · x1

 ∈ RT×T , (1)

where C : RT → RT×T denotes the circulant operator. The
first column of C(x) is the vector x, and the diagonal entries
of C(x) are all equal to x1.

3.2 Convolution Matrix
Convolution is vital to a variety of machine learning prob-
lems. By definition, for any vectors x = (x1, x2, · · · , xT )

⊤ ∈
RT and y = (y1, y2, · · · , yτ̃ )⊤ ∈ Rτ̃ with τ̃ ≤ T , the circular
convolution of two vectors is z = x ⋆ y ∈ RT [27], denoting
the operator with the symbol ⋆; element-wise, we have

zt =
τ̃∑

k=1

xt−k+1yk, ∀t ∈ {1, 2, . . . , T}, (2)

where zt is the tth entry of z and xt−k+1 = xt−k+1+T for
t + 1 ≤ k. In particular, circular convolution is a linear
operator that can be expressed x ⋆ y ≡ Cτ̃ (x)y where
Cτ̃ : RT → RT×τ̃ denotes the convolution operator with
kernel size τ̃ . The resultant convolution matrix consists of
the first τ̃ columns of the circulant matrix C(x) [11], [12].
Given any vectors x,y ∈ RT of the same length, then we
have x ⋆ y ≡ C(x)y.

4 METHODOLOGY

In this section, we introduce an efficient LCR model for im-
puting sparse traffic time series. To resolve the optimization
problem, we seek an FFT implementation in the frequency
domain within the ADMM, instead of the time domain.

4.1 Laplacian Kernel
Laplacian matrix is a classical structure for representing the
links among nodes in a graph. In this work, we extract the
temporal dependencies of time series through undirected
and circulant graphs. Recall that the Laplacian matrix by
definition takes L = D−A in which D and A are the (diag-
onal) degree matrix and adjacency matrix, respectively [28].
In Fig. 1, the Laplacian matrices of both graphs are circulant
matrices, and their first columns are ℓ = (2,−1, 0, 0,−1)⊤

and ℓ = (4,−1,−1,−1,−1)⊤, respectively.
In this work, we introduce a Laplacian kernel as de-

scribed in Definition 1, allowing one to characterize tem-
poral dependencies of time series. In aforementioned cases
as shown in Fig. 1, the first column of the Laplacian matrix
L is indeed a simple example of Laplacian kernel.

x1 x2 x3 x4 x5

(a) Circulant graph with degree 2.

x1 x2 x3 x4 x5

(b) circulant graph with degree 4.

Fig. 1: Undirected and circulant graphs on the relational data
samples {x1, x2, . . . , x5} with certain degrees.

Definition 1 (Laplacian Kernel). Given any time series x ∈
RT , suppose τ ∈ Z+ (τ ≤ 1

2 (T − 1)) be the kernel size of
an undirected and circulant graph, then the Laplacian kernel is
defined as

ℓ ≜ (2τ,−1, · · · ,−1︸ ︷︷ ︸
τ

, 0, · · · , 0,−1, · · · ,−1︸ ︷︷ ︸
τ

)⊤ ∈ RT , (3)

which is also the first column of the Laplacian matrix and the
inherent degree matrix is diagonalized with entries 2τ .

Remark 1. The circulant operation assumes that the start data
points and the end data points are connected, which is a disadvan-
tage in real-world data analysis. To overcome this issue, on any
time series x ∈ RT , one can construct the following vector:

xnew =

[
x

JTx

]
= (x1, · · · , xT , xT , · · · , x1)

⊤ ∈ R2T , (4)

where JT ∈ RT×T is the exchange matrix whose antidiagonal
entries are one and other entries are zero.

Typically, the temporal regularization calculates how
values of x differ from their adjacent values, and can thus be
used as a regularization of local temporal smoothness. Ac-
cording to the definitions of Laplacian kernel and circulant
matrix and the relationship between circular convolution
and circulant matrix, we declare the following form:

Rτ (x) =
1

2
∥Lx∥22 =

1

2
∥C(ℓ)x∥22 =

1

2
∥ℓ ⋆ x∥22. (5)

where ∥ · ∥2 denotes the ℓ2-norm of a vector. As can be seen,
the Laplacian kernel can represent the graphical relationship
in the Laplacian matrix, showing no need for constructing
the Laplacian matrix anymore. The setting of the degree
2τ depends on the strength of local dependencies and the
missing data scenarios (e.g., missing rate).

Remark 2. Definition 1 allows one to obtain a more flexible
design of the kernel ℓ. For example, if we introduce a directed
Laplacian kernel in the form of random walk [15], [13] (i.e.,
ℓ = (1, 0, · · · , 0,−1)⊤ ∈ RT ), then the temporal regularization
is equivalent to the QV regularization, namely,

1

2
∥ℓ ⋆ x∥22 =

1

2
x⊤L̃x, (6)

where L̃ ∈ RT×T is a circulant matrix with the degree 2.

Theorem 1 (Convolution Theorem [27]). For any vectors
x,y ∈ RT , a circular convolution in the time domain is a product
in the frequency domain, and it always holds that

x ⋆ y = F−1(F(x) ◦ F(y)), (7)

where F(·) and F−1(·) denote the discrete Fourier transform
(DFT) and the inverse DFT, respectively. F(x),F(y) ∈ CT are
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the results of DFT on x,y with C denoting the set of complex
numbers. The symbol ◦ denotes the Hadamard product.

Essentially, Theorem 1 describes the relationship be-
tween circular convolution and DFT, showing that the cir-
cular convolution can be implemented in the frequency
domain. The circulant matrix is advantageous because the
required matrix-vector product can usually be done ef-
ficiently by leveraging the structure. Since the Laplacian
kernel stems from circulant matrices, the temporal regular-
ization in Eq. (5) can be thus reformulated as follows,

Rτ (x) =
1

2
∥ℓ ⋆ x∥22 =

1

2T
∥F(ℓ) ◦ F(x)∥22. (8)

Remark 3. We can prove Eq. (8) as follows. Let{
α = ℓ ⋆ x,

β = F(ℓ) ◦ F(x),
(9)

then it takes α = F−1(β) and F(α) = β (see Theorem 1).
Thus, according to the Parseval’s theorem [27], we get

∥α∥22 =
1

T
∥F(α)∥22 =

1

T
∥β∥22, (10)

as claimed in Eq. (8).

4.2 Univariate Time Series Imputation
4.2.1 Problem Definition
Spatiotemporal traffic data modeling is vital to several ITS
applications. Typically, traffic flow data by nature involve
certain time series characteristics, e.g., global daily/weekly
rhythm and local trends. However, such kind of time series
are usually incomplete or even sparse due to unpredictable
data collection processes. In the univariate case, the imputa-
tion problem can be summarized as Problem 1.

Problem 1 (Univariate Time Series Imputation). For any
partially observed time series y ∈ RT with observed index set
Ω, the goal is to impute the missing data P⊥

Ω (y) from PΩ(y).
Herein, PΩ : RT → RT denotes the orthogonal projection
supported on Ω, while P⊥

Ω : RT → RT denotes the orthogonal
projection supported on the complement of Ω.

Remark 4. On the vector y ∈ RT with observed index set Ω, the
operator PΩ(·) can be described as follows,

[PΩ(y)]t =

{
yt, if t ∈ Ω,
0, otherwise,

(11)

where t = 1, 2, . . . , T .

4.2.2 Model Description
Although ConvNNM and CircNNM can reconstruct miss-
ing values in time series, both models fail to incorporate
global and local consistency appropriately. In this work, we
propose the LCR imputation model, in which we utilize
circulant matrix nuclear norm to pursue the global trends
and use the temporal regularization to characterize the local
trends in time series (see Fig. 2 for an illustration). Formally,
the LCR model can be formulated as follows,

min
x

∥C(x)∥∗ + γ · Rτ (x)

s.t. PΩ(x) = PΩ(y),
(12)

where ∥·∥∗ denotes the nuclear norm of matrix (i.e., the sum
of singular values). The vector x ∈ RT is the reconstructed
time series corresponding to the partially observed time
series y. In the objective function, γ is the weight parameter.

x1 x2 x3 x4 x5

Time series

Global trends

C(x)

Modeling

Local trends

ℓ ⋆ x

Modeling
∥C(x)∥∗ + γ

2
∥ℓ ⋆ x∥22

Fig. 2: Illustration of the proposed LCR model.

Since traffic time series data are usually noisy, the strong
observation constraint in Eq. (12) should be replaced by
∥PΩ(z − y)∥2 ≤ ϵ in which ϵ ≥ 0 is the tolerance. Now,
the optimization problem of LCR is given by

min
x

∥C(x)∥∗ + γ · Rτ (x)

s.t. ∥PΩ(x− y)∥2 ≤ ϵ.
(13)

Our LCR model stems from ConvNNM [11], [12], and
it can be solved by the ADMM framework. To resolve
the convex optimization problem of LCR in Eq. (13), we
introduce an auxiliary variable z to preserve the observation
information. Thus, the optimization problem becomes

min
x,z

∥C(x)∥∗ + γ · Rτ (x) + η · π(z)

s.t. x = z,
(14)

where η is a weight parameter. We define π(·) as the re-
constructed errors between z and y in the set Ω, which is
formally given by π(z) = 1

2∥PΩ(z−y)∥22. To reinforce both
global and local trends in the reconstructed time series x, the
observation constraint can be related to the noisy version as
shown in Eq. (13), thus leading to the denoised and smooth
time series in x. Accordingly, the augmented Lagrangian
function of Eq. (14) can be written as follows,

L(x, z,w) =∥C(x)∥∗ + γ · Rτ (x) +
λ

2
∥x− z∥22

+ ⟨w,x− z⟩+ η · π(z),
(15)

where w ∈ RT is the Lagrange multiplier, and λ is a hy-
perparameter. The symbol ⟨·, ·⟩ denotes the inner product.
Note that the constraint x = z in the optimization problem
is relaxed by the Lagrange multiplier.

Thus, the ADMM scheme can be summarized as follows,
x := argmin

x
L(x, z,w),

z := argmin
z

L(x, z,w),

w := w + λ(x− z),

(16)

which is a two-block ADMM. Since the objective function of
Eq. (14) is the sum of two separable convex functions, the
convergence of LCR can be proved as in [29].
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4.2.3 Estimating the Variable x

In particular, with respect to the variable x, we can rewrite
the regularization terms in Eq. (15) as follows,

f =
γ

2
∥ℓ ⋆ x∥22 +

λ

2
∥x− z +w/λ∥22

=
γ

2T
∥ℓ̂ ◦ x̂∥22 +

λ

2T
∥x̂− ẑ + ŵ/λ∥22,

(17)

where ℓ̂ = F(ℓ), and we introduce the variables {x̂, ẑ, ŵ} =
{F(x),F(z),F(w)} referring to {x, z,w} in the frequency
domain. Notably, temporal regularization Rτ (x) can be
converted into a DFT copy (see Eq. (8)), and the Parseval’s
theorem is also applicable to the remaining term of f .

Lemma 1. For any vector x ∈ RT , the nuclear norm of the
resultant circulant matrix C(x) ∈ RT×T is related to the DFT:

∥C(x)∥∗ = ∥F(x)∥1. (18)

Proof. For any circulant matrix C(x) if and only if it is
diagonalizable by the unitary matrix, the eigenvalue decom-
position [26] can be written as follows,

C(x) = Udiag(F(x))UH , (19)

where ·H denotes the conjugate transpose. Since U is a
unitary matrix, it always holds that

∥C(x)∥∗ =∥Udiag(F(x))UH∥∗ = ∥diag(F(x))∥∗ = ∥F(x)∥1,

and we can calculate the singular values of C(x) from the
FFT of x. Here, FFT is an efficient algorithm for computing
the DFT in O(T log T ) time.

Going back to the ADMM scheme in Eq. (16) and using
the property of circulant matrix nuclear norm in Lemma 1,
the x-subproblem can be converted into the optimization
over the variable x̂ in the frequency domain. Thus,

x := argmin
x

∥C(x)∥∗ +
γ

2
∥ℓ ⋆ x∥22 +

λ

2
∥x− z +w/λ∥22,

(20)
is equivalent to

x̂ := argmin
x̂

∥x̂∥1+
γ

2T
∥ℓ̂◦x̂∥22+

λ

2T
∥x̂−ẑ+ŵ/λ∥22. (21)

On each x̂t, the optimization problem is given by

x̂t := argmin
x̂t

|x̂t|+
γ

2T
|ℓ̂tx̂t|2 +

λ

2T
|x̂t − ẑt + ŵt/λ|2

= argmin
x̂t

|x̂t|+
γ|ℓ̂t|2 + λ

2T

∣∣∣x̂t −
λẑt − ŵt

γ|ℓ̂t|2 + λ

∣∣∣2,
(22)

where |ℓ̂tx̂t|2 = |ℓ̂t|2 · |x̂t|2.
The resultant ℓ1-norm minimization is memory-efficient,

easy to compute, and preserves the singular values of cir-
culant matrix that are due to the FFT. The closely related
analysis and results are also discussed in [10], [11], [12].

According to Eqs. (21) and (22), we let

ĥ ≜ (λẑ − ŵ)⊘ (γℓ̂
∗
◦ ℓ̂+ λ1T ), (23)

where ·∗ represents the complex conjugate, and ⊘ denotes
the Hadamard division. 1T ∈ RT is the vector of ones.

The closed-form solution to x̂ can be found in Lemma 2.
As we have the closed-form solution as described in Eq. (28)
(i.e., with respect to each x̂t) such that

x̂t :=
ĥt

|ĥt|
·max{0, |ĥt| − 1/δt}, (24)

with {
δt ≜ (γ|ℓ̂t|2 + λ)/T,

ĥt ≜ (λẑt − ŵt)/(γ|ℓ̂t|2 + λ),
(25)

we can therefore update the variable x by

x := F−1(x̂). (26)

Lemma 2. Following Eqs. (21) and (22), for any ℓ1-norm
minimization problem in complex space such that

min
x̂

∥x̂∥1 +
δ

2
∥x̂− ĥ∥22, (27)

with complex-valued vectors x̂, ĥ ∈ CT and weight parameter
δ ∈ R, element-wise, the solution is given by

x̂t :=
ĥt

|ĥt|
·max{0, |ĥt| − 1/δ}, t = 1, . . . , T. (28)

Proof. In theory, Lemma 2 invokes the shrinkage operator in
[30], [31], [11].

4.2.4 Estimating the Variable z

In the ADMM scheme (see Eq. (16)), the subproblem with
respect to the variable z can be written as follows,

min
z

λ

2
∥x− z −w/λ∥22 +

η

2
∥PΩ(z − y)∥22. (29)

Let g be the objective function, then the partial derivative
with respect to z can be formed by PΩ(z) and P⊥

Ω (z):{
∂g/∂PΩ(z) =λPΩ(z − x−w/λ) + ηPΩ(z − y),

∂g/∂P⊥
Ω (z) =λP⊥

Ω (z − x−w/λ).
(30)

As a result, ∂g/∂z = 0 produces a closed-form solution:

z : =
{
z | ∂g/∂PΩ(z) + ∂g/∂P⊥

Ω (z) = 0
}

=
1

λ+ η
PΩ(λx+w + ηy) +

1

λ
P⊥
Ω (λx+w).

(31)

In this case, if η → +∞, then the solution refers to the LCR
with strong observation constraint in Eq. (12). In terms of
the parameter η, we can preferably set its value to η = c · λ
with c ∈ {102, 103} to preserve the observation information.

4.2.5 Solution Algorithm
As mentioned above, our LCR model reinforces the model-
ing processes of global low-rank and local temporal trends
in time series data. Since we utilize the circulant matrix and
circular convolution, it is not hard to show the appealing
properties of DFT and lead to an elegant and fast solution
algorithm. Algorithm 1 summarizes the implementation of
the proposed LCR model.

To analyze the empirical time complexity of LCR (with
50 iterations by default), Fig. 3 shows the running times
of LCR on the generated data with different data lengths
(i.e., data y ∈ RT with T ∈ {210, 211, . . . , 220}). As shown
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Algorithm 1 Laplacian Convolutional Representation (LCR)

Input: Data y ∈ RT with observed index set Ω, Laplacian
kernel size τ ∈ Z+, and hyperparameters {γ, λ, η}.

Output: Reconstructed vector x ∈ RT .
1: Initialize {x0, z0,w0}.
2: Construct the Laplacian kernel ℓ with τ and perform

FFT on it to get ℓ̂.
3: for i = 0 to maximum iteration do
4: Perform FFT on {zi,wi}.
5: Compute ĥ by Eq. (23).
6: Compute x̂ by the shrinkage in Eq. (24).
7: Compute xi+1 by xi+1 = F−1(x̂) (see Eq. (26)).
8: Compute zi+1 by Eq. (31).
9: Compute wi+1 = wi + λ(xi+1 − zi+1) (see Eq. (16)).

10: end for

in Fig. 3(a), we compare LCR with ConvNNM (e.g., kernel
size τ̃ = 24 in this case), demonstrating that LCR is more
efficient than ConvNNM. Typically, ConvNNM can be con-
verted into a standard nuclear norm minimization with sin-
gular value thresholding (i.e., of time complexity O(τ̃2T ))
[6], [5], [32], [11], [12]. The computational cost of ConvNNM
would increase with a larger τ̃ for the convolution matrix
Cτ̃ (y) ∈ RT×τ̃ . In contrast, both CircNNM and LCR have
an efficient solution through FFT in O(T log T ) time.
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(a) ConvNNM vs. LCR
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(b) LCR

Fig. 3: Empirical time complexity. The model is tested 50
times on each generated data.

4.3 Multivariate Time Series Imputation
4.3.1 Problem Definition
Considering both the spatial and temporal dimensions in
traffic data, we have a multivariate time series imputation
task as described in Problem 2. The critical question is how
to characterize both spatial and temporal dependencies of
traffic time series data in the modeling process.

Problem 2 (Multivariate Time Series Imputation). For any
partially observed time series Y ∈ RN×T with N variables and
T time steps, if its observed index set is denoted by Ω, then the
goal is to impute the missing data P⊥

Ω (Y ) from PΩ(Y ). Herein,
PΩ : RN×T → RN×T and P⊥

Ω : RN×T → RN×T denote the
orthogonal projection supported on Ω and the complement of Ω,
respectively.

4.3.2 Model Description
In this study, we introduce the nuclear norm of the circu-
lant tensor C(X) in Definition 2, which follows the tensor
nuclear norm proposed in [33], [34].

Definition 2 (Circulant Tensor Nuclear Norm). For any
matrix X ∈ RN×T , the corresponding circulant tensor is
C(X) ∈ RN×N×T×T , which can be factorized in the Tucker
format (i.e., higher-order singular value decomposition (SVD))
[35]:

C(X) = S ×1 U1 ×2 U1 ×3 U2 ×4 U2, (32)

where S ∈ RN×N×T×T is the core tensor (consisting of singular
values [33], [34]), while U1 ∈ RN×N and U2 ∈ RT×T are
unitary matrices. The notation ×k, ∀k ∈ {1, 2, 3, 4} represents
the mode-k product between tensor and matrix [35]. The circulant
tensor nuclear norm is defined as

∥C(X)∥∗ =
N∑

n=1

T∑
t=1

sn,n,t,t, (33)

where sn,n,t,t is the (n, n, t, t)-th entry of the core tensor S.

Recall that the temporal regularization in the univariate
LCR model works on each time series independently. To
jointly characterize the spatial and temporal dependencies
for traffic time series, we consider a separable kernel in the
LCR model, namely, K ≜ ℓsℓ

⊤ ∈ RN×T with the spatial
kernel ℓs = (1, 0, · · · , 0)⊤ ∈ RN (i.e., the first column of the
N -by-N identity matrix). In the case of spatial modeling,
ℓs can also be introduced as the Laplacian kernel in Defini-
tion 1. The optimization problem of two-dimensional LCR
(LCR-2D) can be formulated as follows,

min
X

∥C(X)∥∗ +
γ

2
∥K ⋆X∥2F

s.t. ∥PΩ(X − Y )∥F ≤ ϵ,
(34)

where ∥ · ∥F denotes the Frobenius norm of a matrix. The
two-dimensional circular convolution is described in Defini-
tion 3. Although ℓs = (1, 0, · · · , 0)⊤ ∈ RN does not provide
any spatial dependencies, the nuclear norm of circulant
operator on X can achieve implicit spatial modeling. If
applicable, one can characterize spatial correlations by using
the Laplacian kernel.

Definition 3 (Two-Dimensional Circular Convolution [36],
[25]). For any matrices X ∈ RN×T and K ∈ Rν1×ν2 with
ν1 ≤ N, ν2 ≤ T , the circular convolution of two matrices is
defined as

Z = K ⋆X ∈ RN×T , (35)

or element-wise,

zn,t =
ν1∑
i=1

ν2∑
j=1

κi,jxn−i+1,t−j+1, (36)

where n = 1, 2, . . . , N and t = 1, 2, . . . , T . κi,j is the (i, j)-th
entry of K.

Remark 5. In the field of signal processing, the two-dimensional
circular convolution also possesses the properties that are asso-
ciated with two-dimensional DFT. According to the convolution
theorem and the Parseval’s theorem, we have

∥K ⋆X∥2F =
1

NT
∥F(K) ◦ F(X)∥2F , (37)

where F(·) denotes the two-dimensional DFT. Typically, two-
dimensional DFT can be computed by first transforming each
column vector (or row vector) and then each row vector (or column
vector) of the matrix [25].
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4.3.3 ADMM Scheme and Solution Algorithm

As mentioned above, LCR-2D in the multivariate case is
a convex problem that can be resolved by the ADMM.
Following Eq. (16), the ADMM scheme is given by

X : = argmin
X

L(X,Z,W ),

Z : = argmin
Z

L(X,Z,W )

=
1

λ+ η
PΩ(λX +W + ηY ) +

1

λ
P⊥
Ω (λX +W ),

W : = W + λ(X −Z),
(38)

where L(X,Z,W ) is the augmented Lagrangian function:

L(X,Z,W ) =∥C(X)∥∗ +
γ

2
∥K ⋆X∥2F

+
λ

2
∥X −Z∥2F + ⟨W ,X −Z⟩

+
η

2
∥PΩ(Z − Y )∥2F .

(39)

Although the nuclear norm of circulant tensor in Defini-
tion 2 is more complicated than the nuclear norm of circu-
lant matrix (see Lemma 1), two-dimensional DFT allows one
to find the solution to X , if not mentioning the difficulty of
obtaining a unique decomposition of circulant tensor. In the
frequency domain, it takes

X̂ := argmin
X̂

∥X̂∥1 +
γ

2NT
∥K̂ ◦ X̂∥2F

+
λ

2NT
∥X̂ − Ẑ + Ŵ /λ∥2F ,

(40)

where {K̂, X̂, Ẑ, Ŵ } refers to {K,X,Z,W } in the fre-
quency domain. Without loss of generality, this subproblem
for ℓ1-norm minimization in complex space can also be
solved by the shrinkage operator in Eq. (28). Although
Definition 2 describes the formula of higher-order SVD that
leads to the nuclear norm, the computation of the circulant
tensor nuclear norm minimization is actually converted
into an ℓ1-norm minimization with two-dimensional FFT.
Algorithm 2 summarizes the whole scheme of LCR-2D.

Algorithm 2 Two-Dimensional Laplacian Convolutional
Representation (LCR-2D)

Input: Data Y ∈ RN×T with observed index set Ω, Lapla-
cian kernel size τ ∈ Z+, and hyperparameters {γ, λ, η}.

Output: Reconstructed matrix X ∈ RN×T .
1: Initialize {X0,Z0,W 0}.
2: Construct the Laplacian kernel ℓ ∈ RT with τ .
3: Construct the spatial kernel ℓs = (1, 0, · · · , 0) ∈ RN

(or ℓs ∈ RN with τs) and build up a separable kernel
K ≜ ℓsℓ

⊤.
4: for i = 0 to maximum iteration do
5: Perform FFT on {Zi,W i}.
6: Compute X̂ by referring to the shrinkage in Eq. (28).
7: Compute Xi+1 by Xi+1 = F−1(X̂).
8: Compute Zi+1 by Eq. (38).
9: Compute W i+1 by Eq. (38).

10: end for

5 UNIVARIATE TRAFFIC TIME SERIES IMPUTATION

This section evaluates the reconstruction of univariate time
series from partial observations with LCR. We focus on un-
derstanding how well the reconstructed time series preserve
the global and local trends in the imputation task. Experi-
ments are conducted on both traffic speed time series (weak
periodicity and strong noises) and traffic volume time series
(strong periodicity) collected through dual-loop detectors
on the highway network of Portland, USA.1 Specifically,
the datasets include: (Traffic speed) The speed observations
with 15-min time resolution (i.e., 96 expected data samples
per day) over three days (i.e., of length 288). (Traffic volume)
The volume observations have the same time resolution as
the traffic speed. In particular, we consider the imputation
scenarios on fully observed, 20%, 10%, and 5% observed
data, respectively. To generate partially observed data, we
randomly mask a certain number of data as missing values.
Since both traffic speed and volume time series show cycli-
cal patterns, the start data points and the end data points can
be connected by circulant matrix and circular convolution
without flipping operation in Remark 1.

In the following experiments, to evaluate the imputation
performance, we use the mean absolute percentage error
(MAPE) and the root mean square error (RMSE):

MAPE =
1

n

n∑
i=1

|yi − ŷi|
yi

, RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2,

where n is the total number of estimated values, and yi and
ŷi are the actual value and its estimation, respectively.

5.1 Traffic Speed

Fig. 4(a) demonstrates the reconstructed time series by LCR
on the fully observed time series, in which the data noises
can be smoothed out due to the existence of temporal
regularization and the relaxation of observation constraint
∥PΩ(x − y)∥2 ≤ ϵ in which y and x are the partial
observations and the reconstructed time series, respectively.
Fig. 4(b) and 4(c) show the imputation performance by LCR
with partial observations. Of these results, the reconstructed
time series can accurately approximate both partial observa-
tions and missing values while preserving the trends of the
ground truth time series.

Next, we test a more challenging scenario in which we
aim to reconstruct 95% missing values from 5% observa-
tions (i.e., reconstructing 274 missing values from only 14
data samples). We compare the time series imputation of
LCR with the following baseline models: (i) CircNNM [11]
(equivalent to LCR without temporal regularization), (ii)
ConvNNM [11], and (iii) ConvNNM+ (i.e., ConvNNM with
temporal regularization) such that

min
x

∥Cτ̃ (x)∥∗ +
γ

2
∥ℓ ⋆ x∥22

s.t. ∥PΩ(x− y)∥2 ≤ ϵ.
(41)

Essentially, comparing the proposed LCR model with
these baseline models allows one to highlight 1) the im-
portance of global and local trends modeling in LCR, and

1. https://portal.its.pdx.edu/

https://portal.its.pdx.edu/
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(b) 80% missing values. Here, MAPE = 1.42%.
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(c) 90% missing values. Here, MAPE = 1.69%.

Fig. 4: Univariate traffic time series imputation on the freeway traffic speed time series. The blue curve represents the
ground truth time series, while the red curve refers to the reconstructed time series produced by LCR. Here, partial
observations are illustrated as blue circles.
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(a) CircNNM (red curve). Here, MAPE = 2.47%.
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(b) ConvNNM (red curve). Here, MAPE = 2.33%.
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(c) ConvNNM+ (red curve). Here, MAPE = 2.30%.
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(d) LCR (red curve) with τ = 2, γ = 5λ. Here,
MAPE = 2.13%.

Fig. 5: Univariate traffic time series imputation on the free-
way traffic speed time series. In this case, we mask 95%
observations as missing values and only have 14 speed
observations for training the model.

2) the fast implementation of LCR via the use of FFT. The
imputation results on the given time series are shown in
Fig. 5, we can summarize the following findings:

• The reconstructed time series by CircNNM shows
high fluctuations due to the lack of local trend mod-
eling. As a result, the reconstructed time series fails
to reproduce trends of the ground truth at such a
high missing rate.

• ConvNNM performs better than CircNNM. The re-
constructed time series fits the observed values well,
but the trend does not match the ground truth per-

fectly. Unlike CircNNM, ConvNNM cannot employ a
fast implementation via FFT. As a result, ConvNNM
is not well-suited to large problems (also see Fig. 3).

• ConvNNM+ outperforms ConvNNM. This demon-
strates the significance of Laplacian kernel for
time series modeling. However, both ConvNNM
and ConvNNM+ require implementing the singular
value thresholding on T -by-τ̃ convolution matrices.

As shown in Fig. 5(d), the reconstructed time series by
LCR demonstrates consistent global and local trends with
the trends of ground truth time series, and our LCR model
clearly outperforms the baseline models. By comparing
CircNNM with LCR, the imputation results emphasize the
importance of temporal regularization Rτ (x).

5.2 Traffic Volume

In Fig. 6, the traffic volume time series is characterized by a
strong daily rhythm. The time series shows relatively low
traffic volume at night, and the traffic volume reaches a
peak during rush hours, implying typical travelers’ behav-
ioral rhythms. In this case, the time series possesses strong
seasonality and three remarkable peaks over three days.

The task is reconstructing 95% missing values from 5%
observations. As can be seen, due to the lack of explicit
temporal modeling, both CircNNM and ConvNNM models
cannot produce time series as smooth as LCR. Observing
the reconstructed time series, it is clear that LCR produces
more accurate reconstruction results than both CircNNM
and ConvNNM. Yet, in contrast to the traffic speed time
series, due to the strong seasonality (i.e., daily rhythm in
traffic flow) in the traffic volume time series, both CircNNM
and ConvNNM can produce reasonable time series, which
seems to be consistent with the results in [12].

6 MULTIVARIATE TRAFFIC TIME SERIES IMPUTA-
TION

In this section, we consider some real-world multivariate
traffic time series imputation scenarios, including speed
field reconstruction of vehicular traffic flow and large-scale
traffic speed data imputation. The experiments and evalu-
ation of LCR are expected to demonstrate the efficiency of
global and local trends modeling on traffic time series with
spatiotemporal settings.
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(a) CircNNM. Here, MAPE = 36.31%.
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(b) ConvNNM. Here, MAPE = 33.18%.
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(c) LCR with τ = 2, γ = 5λ. Here, MAPE =
19.59%.

Fig. 6: Univariate time series imputation on the freeway traffic volume time series. In this case, we randomly remove 95%
observations as missing values, and we only have 14 volume observations for the reconstruction.

6.1 Speed Field Reconstruction
Speed field reconstruction is a critical problem in vehicular
traffic flow modeling as the data collection process is often
far from ideal [37]. The task is to reconstruct the traffic
speed distribution along a road segment during a period
using the motion states (i.e., time, location, and speed) of
a small portion of vehicles [38], e.g., to estimate the traffic
congestion by using only the motion states of taxis.

6.1.1 Datasets
Traffic states such as movement speeds measure the status
of vehicular traffic flow, which can be extracted from high-
resolution vehicle trajectories [37]. In the literature, there
are several classical traffic flow datasets, such as HighD2

and CitySim3 collected through drones across a fraction
of roads [39], [40]. The drones can gather the movement
trajectories of vehicles for driving behavior modeling and
traffic state analysis. In terms of the HighD dataset, there are
60 video recordings available from several German highway
sections, and each covers trajectory data on the 420-meter
road segment with multiple lanes. We select the video #46
for experiments and the resultant speed field tensor is of
size 142×595×3, i.e., 142 discrete locations (3-meter spatial
resolution), 595 time steps (2-second time resolution), and 3
lanes, see Fig. 8(a), 8(d), and 8(g). In terms of the CitySim
dataset, it contains video recordings of vehicular trajectory
data collected from various road infrastructures, including
freeways, expressways, and intersections. We select the tra-
jectory data of one freeway for experiments. The resultant
speed field tensor is of size 126 × 442 × 3, i.e., 126 discrete
locations (5-meter spatial resolution), 442 time steps (2-
second time resolution), and 3 lanes, see Fig. 9(a), 9(d), and
9(g). In the experiment, we randomly mask a certain fraction
of trajectories (e.g., 30%, 50%, and 70%) and then construct
the speed field that shows partial observations.

6.1.2 Baseline Models
For comparison, we consider some low-rank matrix/tensor
completion models, including LRMC [6], Hankel tensor
factorization (HTF [7] in the form of CP factorization), High-
accuracy low-rank tensor completion (HaLRTC [41]), and
low-rank tensor completion with truncated nuclear norm

2. Highway Drone (HighD) dataset is available at https://www.
highd-dataset.com/.

3. A Drone-Based Vehicle Trajectory Dataset for Safety-Oriented Re-
search and Digital Twins (CitySim) is available at https://github.com/
ozheng1993/UCF-SST-CitySim-Dataset.

(LRTC-TNN [42]). To highlight the advantage of LCR-2D,
we also choose the following baseline models:

• LCRN : We consider to implement LCR over N uni-
variate time series problems independently, i.e.,

min
X

N∑
n=1

∥C(xn)∥∗ +
γ

2

N∑
n=1

∥ℓ ⋆ xn∥22

s.t. ∥PΩ(X − Y )∥F ≤ ϵ,

(42)

where xn ∈ RT , n = 1, 2, . . . , N are the univariate
time series of X ∈ RN×T .

• CTNNM: Circulant tensor nuclear norm minimiza-
tion whose objective function is specified as ∥C(X)∥∗
(i.e., the special case of LCR-2D without regulariza-
tion term).

• Quadratic variation completion (QVC) such that

min
X

γ

2
tr(XL̃X⊤)

s.t. ∥PΩ(X − Y )∥F ≤ ϵ,
(43)

with the Laplacian matrix L̃ referring to Eq. (6), and
tr(·) denotes the trace of matrix. In the meanwhile,
we let the spatial kernel be ℓs = (1, 0, · · · , 0, 0) ∈ RN

and the temporal kernel be parameterized by τ in
Definition 1, referring to Laplacian kernelized com-
pletion (LKC, i.e., the special case of LCR-2D without
circulant tensor nuclear norm).

6.1.3 Model Setting

To eliminate correlations between the start data points and
the end data points in our model, we introduce a 2N -by-2T
block matrix (i.e., with four blocks) which flips the original
matrix Y , see Fig. 7. This matrix can be regarded as the input
into the LCR-2D model. The model results are constructed
by averaging the blocks according to the flipping operation.

In this case, we intend to highlight the importance of
global/local trend modeling on the speed field. Since each
speed field dataset includes lane-level trajectories, we eval-
uate LCR-2D on each lane-level speed field independently.
The default hyperparameter η is set as 102λ. On the HighD
dataset, we set λ = 10−3NT and γ = λ. We validate
the kernel size as τ = 1 on the 30%-trajectory speed field
and τ = 2 on the 50%-/70%-trajectory speed field. On the
CitySim dataset, we set λ = 10−4NT , γ = λ, and τ = 3
after the numerical evaluation.

https://www.highd-dataset.com/
https://www.highd-dataset.com/
https://github.com/ozheng1993/UCF-SST-CitySim-Dataset
https://github.com/ozheng1993/UCF-SST-CitySim-Dataset
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TABLE 1: Reconstruction performance (in MAPE (%)/RMSE) achieved by LCR-2D and baseline models on both speed field
datasets. Note that the best results are emphasized in bold fonts, and we underline the second-best results.

Dataset Rate LCR-2D LCRN CTNNM QVC LKC LRMC [6] HTF [7] HaLRTC [41] LRTC-TNN [42]

HighD
30% 3.57/1.41 6.79/4.09 3.91/1.46 6.79/4.59 6.62/4.60 7.11/4.61 4.38/1.66 4.63/1.78 3.89/1.50
50% 4.06/1.52 6.88/3.49 4.57/1.61 7.02/3.97 6.06/3.88 9.37/5.30 4.67/1.63 5.63/2.06 4.53/1.63
70% 4.73/1.77 7.91/3.32 5.61/1.87 8.12/4.03 6.52/3.87 16.79/8.91 5.76/2.17 7.94/3.01 5.75/2.03

CitySim
30% 8.88/2.71 10.88/4.24 9.23/2.81 10.97/4.30 10.90/4.24 11.27/4.43 9.28/2.78 10.91/4.31 10.90/4.26
50% 9.08/2.69 10.56/3.89 9.59/2.82 10.65/3.96 10.65/3.92 11.42/4.29 9.49/2.83 10.66/3.99 10.49/3.87
70% 9.07/2.66 10.35/3.67 9.42/2.73 10.33/3.70 10.53/3.71 12.96/4.97 9.93/2.94 11.02/3.92 10.46/3.71

Matrix Y

Modeling

Fl
ip

ro
w

s
Flip columns

Fig. 7: Constructing the matrix that flips the original matrix
Y along rows and columns simultaneously. This operation
can prevent the LCR-2D model from misleading values on
the border rows and columns.

6.1.4 Results
Table 1 gives the speed field reconstruction performance
of LCR-2D and some baseline models. We can summarize
the following findings: (i) As LCRN works on the univari-
ate time series independently, spatial correlations of speed
fields are totally ignored. The better performance of LCR-2D
against LCRN highlights the importance of spatial modeling
for speed field reconstruction. (ii) Recall that CTNNM is
a special case of LCR-2D without Laplacian kernels, we
empirically demonstrate that LCR-2D outperforms CTNNM
on both datasets, implying that the spatiotemporal local
trend modeling is of great significance for producing ac-
curate reconstruction of sparse speed fields. (iii) QVC and
LKC cannot produce accurate reconstruction of speed fields
as the proposed LCR-2D model, and this implies the im-
portance of circulant tensor nuclear norm in LCR-2D. (iv)
LCR-2D performs better than a sequence of matrix/tensor
completion models on both datasets. This demonstrates that
an appropriate spatiotemporal modeling on the low-rank
framework is important for speed field reconstruction.

As mentioned above, both circulant tensor nuclear norm
and regularization term with Laplacian kernels in the objec-
tive function of LCR-2D are of great significance. Fig. 8 and
9 show the reconstruction of speed fields with sparse inputs
(i.e., on 70% masked trajectories). It seems that LCR-2D can
achieve satisfactory results for speed field reconstruction
because of the spatiotemporal correlation of traffic wave [43]
characterized by both global and local trends.

6.2 PeMS Traffic Speed Imputation
In what follows, we study the generalization of LCR to
high-dimensional data and evaluate the model on a large-
scale traffic flow dataset. The data are collected by the
California department of transportation through their Per-
formance Measurement System (PeMS) [44]. This dataset
contains freeway traffic speed collected from 11,160 traffic

measurement sensors over 4 weeks (the first 4 weeks in
the year of 2018) with a 5-minute time resolution (288 time
intervals per day) in California, USA.4 It can be arranged
in a matrix of size 11160 × 8064, and this dataset contains
about 90 million observations.

To set up the imputation task, we randomly mask 30%,
50%, 70%, and 90% traffic speed observations as missing
values, referred to as 30%, 50%, 70%, and 90% missing
rates, respectively. To assess the imputation performance,
we use the actual values of the masked missing entries as the
ground truth to compute MAPE and RMSE. For comparison,
the chosen baseline models are CircNNM [11], LRMC [6],
HaLRTC [41], LRTC-TNN [42], and nonstationary temporal
matrix factorization (NoTMF [17]). We also consider the
comparison with (i) LCR-2D, (ii) LCRN (i.e., implementing
LCR over N univariate time series independently), (iii) LCR
(i.e., the LCR model via vectorization on the N -by-T mul-
tivariate time series), and (iv) CTNNM. Due to the day-to-
day cyclical patterns of this dataset, we do not consider the
flipping operation (see Fig. 7) in the numerical evaluation.

As shown in Table 2, LCR-2D, LCRN , and LCR achieve
very competitive imputation accuracy and outperform base-
line models. Among the baseline models in Table 2, CTNNM
and CircNNM are the special cases of LCR-2D and LCR,
respectively. Both models can be implemented by FFT like
our LCR models. Comparing the imputation performance
of CTNNM (or CircNNM) and LCR-2D (or LCR) shows
the significant improvement of imputation achieved by
LCR-2D over CTNNM, mainly due to the existence of
the regularization term with Laplacian kernels. Therefore,
introducing local trend modeling with Laplacian kernels
in our LCR models is of great significance for traffic time
series imputation. Despite the aforementioned comparison,
our LCR models perform significantly better than some
matrix/tensor completion algorithms such as LRMC, HaL-
RTC, and LRTC-TNN. Here, these matrix/tensor comple-
tion algorithms provide well-suited frameworks for recon-
structing missing values in data matrix/tensor. However,
they involve high time complexity in the singular value
thresholding process, e.g.,

O(min{N2T,NT 2}) (SVD) vs. O(NT log(NT )) (FFT),

making it extremely costly for large-scale problems. In con-
trast, our LCR models take an ℓ1-norm minimization in
the frequency domain via the use of FFT. NoTMF jointly
characterizes global and local trends by a unified and effi-

4. The dataset is available at https://doi.org/10.5281/zenodo.
3939792.

https://doi.org/10.5281/zenodo.3939792
https://doi.org/10.5281/zenodo.3939792
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(a) Original speed field (lane #1). (b) Incomplete speed field (lane #1). (c) Reconstructed speed field (lane #1).

(d) Original speed field (lane #2). (e) Incomplete speed field (lane #2). (f) Reconstructed speed field (lane #2).

(g) Original speed field (lane #3). (h) Incomplete speed field (lane #3). (i) Reconstructed speed field (lane #3).

Fig. 8: Speed field reconstruction achieved by LCR-2D on 70% masked trajectories of the HighD data. The speed fields with
duration of 1,190 seconds are collected from the road segment of length 426 meters.

(a) Original speed field (lane #1). (b) Incomplete speed field (lane #1). (c) Reconstructed speed field (lane #1).

(d) Original speed field (lane #2). (e) Incomplete speed field (lane #2). (f) Reconstructed speed field (lane #2).

(g) Original speed field (lane #3). (h) Incomplete speed field (lane #3). (i) Reconstructed speed field (lane #3).

Fig. 9: Speed field reconstruction achieved by LCR-2D on 70% masked trajectories of the CitySim data. The speed fields
with duration of 884 seconds are collected from the road segment of length 630 meters.

TABLE 2: Imputation performance (MAPE (%)/RMSE) on the PeMS-4W traffic speed dataset. Note that the best results are
emphasized in bold fonts, and we underline the second-best results.

Rate LCR-2D LCRN LCR CTNNM CircNNM [11] LRMC [6] HaLRTC [41] LRTC-TNN [42] NoTMF [17]

30% 1.50/1.49 1.48/1.50 1.50/1.49 2.26/1.84 2.26/1.84 2.04/1.80 1.98/1.73 1.68/1.55 2.95/2.65
50% 1.76/1.69 1.73/1.73 1.76/1.69 2.67/2.14 2.69/2.15 2.43/2.12 2.22/1.98 1.93/1.77 3.05/2.73
70% 2.07/2.06 2.07/2.12 2.08/2.07 3.40/2.66 3.43/2.67 3.08/2.66 2.84/2.49 2.33/2.14 3.33/2.97
90% 3.19/3.05 3.24/3.22 3.21/3.06 5.22/3.90 5.34/3.96 6.05/4.43 4.39/3.66 3.40/3.10 5.22/4.71
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cient temporal matrix factorization framework, but as can
be seen, it is inferior to the LCR models.

7 CONCLUSION

In this study, we focus on reconstructing spatiotemporal
traffic data from partial observations. To model the local
trends in traffic time series, we introduce a Laplacian kernel
for temporal regularization in the form of circular convolu-
tion. Following that definition, we propose an LCR model
that integrates the temporal regularization into a circulant-
matrix-based low-rank model for characterizing both global
and local trends in traffic time series, bridging the gap be-
tween low-rank models and graph Laplacian models. When
developing the solution algorithm, we borrow the proper-
ties of circulant matrix and circular convolution, and prove
that our LCR model has a fast implementation with FFT.
Specifically, the nuclear norm minimization with Laplacian
kernelized temporal regularization can be converted into an
ℓ1-norm minimization in complex space. Beyond univariate
time series imputation, LCR can be easily adapted to multi-
variate or even multidimensional time series imputation.

In the numerical experiments, we conduct both univari-
ate and multivariate time series imputation tasks on several
real-world traffic flow datasets. On the sparse and noisy
traffic data, LCR can accurately reconstruct traffic time series
with the elimination of data noises and reinforce local time
series trends, demonstrating the importance of local trend
modeling. On the speed field reconstruction task, the results
demonstrate the importance of spatiotemporal modeling
with Laplacian kernels. On the large-scale dataset, LCR out-
performs the baseline models and demonstrates strong gen-
eralization to high-dimensional problems due to the efficient
implementation and relatively low time complexity. Despite
the great success of temporal modeling in LCR, the key idea
lies in connecting the low-rank models and the Laplacian
kernelized regularization through FFT, which is also well-
suited to some complicated spatiotemporal reconstruction
problems. This study provides insight into traffic time series
data modeling, nevertheless, the essential idea of LCR also
matches the need for time series imputation and forecasting
in other domains, while the existing studies (e.g., [11], [12])
already discussed the applications of circulant/convolution
matrix-based methods to various time series data.

ACKNOWLEDGMENT

Xinyu Chen would like to thank the Institute for Data
Valorisation (IVADO) and the Interuniversity Research Cen-
tre on Enterprise Networks, Logistics and Transportation
(CIRRELT) for providing the PhD Excellence Scholarship
to support this study. The work of HanQin Cai is partially
supported by NSF DMS 2304489.

REFERENCES

[1] X. Chen and L. Sun, “Bayesian temporal factorization for mul-
tidimensional time series prediction,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 44, no. 9, pp. 4659–4673, 2021.

[2] X. Miao, Y. Wu, J. Wang, Y. Gao, X. Mao, and J. Yin, “Generative
semi-supervised learning for multivariate time series imputation,”
in Proceedings of the AAAI conference on artificial intelligence, vol. 35,
no. 10, 2021, pp. 8983–8991.

[3] Y. Wu, D. Zhuang, A. Labbe, and L. Sun, “Inductive graph neural
networks for spatiotemporal kriging,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, no. 5, 2021, pp. 4478–
4485.

[4] L. Li, X. Su, Y. Zhang, Y. Lin, and Z. Li, “Trend modeling for
traffic time series analysis: An integrated study,” IEEE Transactions
on Intelligent Transportation Systems, vol. 16, no. 6, pp. 3430–3439,
2015.

[5] E. J. Candes and Y. Plan, “Matrix completion with noise,” Proceed-
ings of the IEEE, vol. 98, no. 6, pp. 925–936, 2010.

[6] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding
algorithm for matrix completion,” SIAM Journal on optimization,
vol. 20, no. 4, pp. 1956–1982, 2010.

[7] T. Yokota, B. Erem, S. Guler, S. K. Warfield, and H. Hontani,
“Missing slice recovery for tensors using a low-rank model in
embedded space,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018, pp. 8251–8259.

[8] J.-F. Cai, T. Wang, and K. Wei, “Fast and provable algorithms for
spectrally sparse signal reconstruction via low-rank hankel matrix
completion,” Applied and Computational Harmonic Analysis, vol. 46,
no. 1, pp. 94–121, 2019.

[9] H. Cai, J.-F. Cai, T. Wang, and G. Yin, “Accelerated structured al-
ternating projections for robust spectrally sparse signal recovery,”
IEEE Transactions on Signal Processing, vol. 69, pp. 809–821, 2021.

[10] R. Yamamoto, H. Hontani, A. Imakura, and T. Yokota, “Fast algo-
rithm for low-rank tensor completion in delay-embedded space,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 2058–2066.

[11] G. Liu and W. Zhang, “Recovery of future data via convolution
nuclear norm minimization,” IEEE Transactions on Information The-
ory, 2022.

[12] G. Liu, “Time series forecasting via learning convolutionally low-
rank models,” IEEE Transactions on Information Theory, vol. 68,
no. 5, pp. 3362–3380, 2022.

[13] D. Cai, X. He, J. Han, and T. S. Huang, “Graph regularized
nonnegative matrix factorization for data representation,” IEEE
transactions on pattern analysis and machine intelligence, vol. 33, no. 8,
pp. 1548–1560, 2010.

[14] X. Mao, K. Qiu, T. Li, and Y. Gu, “Spatio-temporal signal recovery
based on low rank and differential smoothness,” IEEE Transactions
on Signal Processing, vol. 66, no. 23, pp. 6281–6296, 2018.

[15] L. Xiong, X. Chen, T.-K. Huang, J. Schneider, and J. G. Carbonell,
“Temporal collaborative filtering with bayesian probabilistic ten-
sor factorization,” in Proceedings of the 2010 SIAM international
conference on data mining. SIAM, 2010, pp. 211–222.

[16] H.-F. Yu, N. Rao, and I. S. Dhillon, “Temporal regularized matrix
factorization for high-dimensional time series prediction,” in Ad-
vances in Neural Information Processing Systems, 2016, pp. 847–855.

[17] X. Chen, C. Zhang, X.-L. Zhao, N. Saunier, and L. Sun, “Nonsta-
tionary temporal matrix factorization for multivariate time series
forecasting,” arXiv preprint arXiv:2203.10651, 2022.

[18] X. Chen, Z. He, and L. Sun, “A Bayesian tensor decomposition ap-
proach for spatiotemporal traffic data imputation,” Transportation
Research Part C: Emerging Technologies, vol. 98, pp. 73 – 84, 2019.

[19] F. Sedighin, A. Cichocki, T. Yokota, and Q. Shi, “Matrix and tensor
completion in multiway delay embedded space using tensor train,
with application to signal reconstruction,” IEEE Signal Processing
Letters, vol. 27, pp. 810–814, 2020.

[20] Z. Chen and A. Cichocki, “Nonnegative matrix factorization with
temporal smoothness and/or spatial decorrelation constraints,”
Laboratory for Advanced Brain Signal Processing, RIKEN, Tech. Rep,
vol. 68, 2005.

[21] Y. Wang, Y. Zhang, X. Piao, H. Liu, and K. Zhang, “Traffic data
reconstruction via adaptive spatial-temporal correlations,” IEEE
Transactions on Intelligent Transportation Systems, vol. 20, no. 4, pp.
1531–1543, 2018.

[22] X. Chen, Y. Chen, N. Saunier, and L. Sun, “Scalable low-rank
tensor learning for spatiotemporal traffic data imputation,” Trans-
portation research part C: emerging technologies, vol. 129, p. 103226,
2021.

[23] X. Chen, M. Lei, N. Saunier, and L. Sun, “Low-rank autoregressive
tensor completion for spatiotemporal traffic data imputation,”
IEEE Transactions on Intelligent Transportation Systems, 2021.

[24] N. Rao, H.-F. Yu, P. K. Ravikumar, and I. S. Dhillon, “Collabo-
rative filtering with graph information: Consistency and scalable
methods,” Advances in neural information processing systems, vol. 28,
2015.



13

[25] P. C. Hansen, J. G. Nagy, and D. P. O’leary, Deblurring images:
matrices, spectra, and filtering. SIAM, 2006.

[26] J. Wright and Y. Ma, High-dimensional data analysis with low-
dimensional models: Principles, computation, and applications. Cam-
bridge University Press, 2022.

[27] S. L. Brunton and J. N. Kutz, Data-driven science and engineering:
Machine learning, dynamical systems, and control. Cambridge Uni-
versity Press, 2022.

[28] A. Sandryhaila and J. M. Moura, “Discrete signal processing
on graphs: Graph fourier transform,” in 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing. IEEE, 2013,
pp. 6167–6170.

[29] C. Chen, B. He, Y. Ye, and X. Yuan, “The direct extension of admm
for multi-block convex minimization problems is not necessarily
convergent,” Mathematical Programming, vol. 155, no. 1-2, pp. 57–
79, 2016.

[30] J. Yang, W. Yin, Y. Zhang, and Y. Wang, “A fast algorithm for edge-
preserving variational multichannel image restoration,” SIAM
Journal on Imaging Sciences, vol. 2, no. 2, pp. 569–592, 2009.

[31] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, “Robust recovery of
subspace structures by low-rank representation,” IEEE transactions
on pattern analysis and machine intelligence, vol. 35, no. 1, pp. 171–
184, 2012.

[32] E. Candes and B. Recht, “Exact matrix completion via convex
optimization,” Communications of the ACM, vol. 55, no. 6, pp. 111–
119, 2012.

[33] O. Semerci, N. Hao, M. E. Kilmer, and E. L. Miller, “Tensor-based
formulation and nuclear norm regularization for multienergy
computed tomography,” IEEE Transactions on Image Processing,
vol. 23, no. 4, pp. 1678–1693, 2014.

[34] C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin, and S. Yan, “Tensor robust
principal component analysis with a new tensor nuclear norm,”
IEEE transactions on pattern analysis and machine intelligence, vol. 42,
no. 4, pp. 925–938, 2019.

[35] T. G. Kolda and B. W. Bader, “Tensor decompositions and applica-
tions,” SIAM Review, vol. 51, no. 3, pp. 455–500, 2009.

[36] E. O. Brigham, The fast Fourier transform and its applications.
Prentice-Hall, Inc., 1988.

[37] M. Treiber and A. Kesting, “Traffic flow dynamics,” Traffic Flow
Dynamics: Data, Models and Simulation, Springer-Verlag Berlin Hei-
delberg, pp. 983–1000, 2013.

[38] C. De Fabritiis, R. Ragona, and G. Valenti, “Traffic estimation and
prediction based on real time floating car data,” in 2008 11th
international IEEE conference on intelligent transportation systems.
IEEE, 2008, pp. 197–203.

[39] R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein, “The highd
dataset: A drone dataset of naturalistic vehicle trajectories on
german highways for validation of highly automated driving
systems,” in 2018 21st international conference on intelligent trans-
portation systems (ITSC). IEEE, 2018, pp. 2118–2125.

[40] O. Zheng, M. Abdel-Aty, L. Yue, A. Abdelraouf, Z. Wang, and
N. Mahmoud, “CitySim: A drone-based vehicle trajectory dataset
for safety-oriented research and digital twins,” Transportation Re-
search Record: Journal of the Transportation Research Board, jul 2023.

[41] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for
estimating missing values in visual data,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 35, no. 1, pp. 208–
220, 2013.

[42] X. Chen, J. Yang, and L. Sun, “A nonconvex low-rank tensor
completion model for spatiotemporal traffic data imputation,”
arXiv preprint arXiv:2003.10271, 2020.

[43] X. Wang, Y. Wu, D. Zhuang, and L. Sun, “Low-rank hankel
tensor completion for traffic speed estimation,” arXiv preprint
arXiv:2105.11335, 2021.

[44] C. Chen, K. Petty, A. Skabardonis, P. Varaiya, and Z. Jia, “Freeway
performance measurement system: mining loop detector data,”
Transportation Research Record, vol. 1748, no. 1, pp. 96–102, 2001.

Xinyu Chen received his Ph.D. degree from the
University of Montreal, Montreal, QC, Canada.
He is now a Postdoctoral Associate at Mas-
sachusetts Institute of Technology, Cambridge,
MA, United States. His current research cen-
ters on machine learning, spatiotemporal data
modeling, intelligent transportation systems, and
urban science.

Zhanhong Cheng received his Ph.D. degree
from McGill University. He received his B.S. and
M.S. degrees from Harbin Institute of Technol-
ogy, Harbin, China. He is now a Postdoc re-
searcher in the Department of Civil Engineering
at McGill University, Montreal, QC, Canada. His
research interests include public transportation,
travel behavior modeling, spatiotemporal fore-
casting, and machine learning in transportation.

HanQin Cai received the PhD degree in applied
mathematics and computational sciences from
the University of Iowa. He is currently the Paul N.
Somerville Endowed assistant professor with the
Department of Statistics and Data Science and
the Department of Computer Science, University
of Central Florida. He is also the director of
Data Science Lab. His research interests include
machine learning, data science, mathematical
optimization, and applied harmonic analysis.

Nicolas Saunier received an engineering de-
gree and a Doctorate (Ph.D.) in computer sci-
ence from Telecom ParisTech, Paris, France, re-
spectively in 2001 and 2005. He is currently a
Full Professor with the Civil, Geological and Min-
ing Engineering Department at Polytechnique
Montreal, Montreal, QC, Canada. His research
interests include intelligent transportation, road
safety, and data science for transportation.

Lijun Sun (Senior Member, IEEE) received the
B.S. degree in civil engineering from Tsinghua
University, Beijing, China, in 2011, and the
Ph.D. degree in civil engineering (transportation)
from the National the University of Singapore
in 2015. He is currently an Associate Profes-
sor and William Dawson Scholar in the De-
partment of Civil Engineering, McGill University,
Montreal, QC, Canada. His research centers
on intelligent transportation systems, traffic con-
trol and management, spatiotemporal modeling,

Bayesian statistics, and agent-based simulation.


	Introduction
	Related Work
	Low-Rank Completion with Algebraic Structures
	Imputation with Temporal Modeling

	Preliminaries
	Circulant Matrix
	Convolution Matrix

	Methodology
	Laplacian Kernel
	Univariate Time Series Imputation
	Problem Definition
	Model Description
	Estimating the Variable bold0mu mumu xxxxxx
	Estimating the Variable bold0mu mumu zzzzzz
	Solution Algorithm

	Multivariate Time Series Imputation
	Problem Definition
	Model Description
	ADMM Scheme and Solution Algorithm


	Univariate Traffic Time Series Imputation
	Traffic Speed
	Traffic Volume

	Multivariate Traffic Time Series Imputation
	Speed Field Reconstruction
	Datasets
	Baseline Models
	Model Setting
	Results

	PeMS Traffic Speed Imputation

	Conclusion
	References
	Biographies
	Xinyu Chen
	Zhanhong Cheng
	HanQin Cai
	Nicolas Saunier
	Lijun Sun


