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Abstract. Forecasting urban traffic states is crucial to transportation network monitoring 
and management, playing an important role in the decision-making process. Despite the 
substantial progress that has been made in developing accurate, efficient, and reliable algo-
rithms for traffic forecasting, most existing approaches fail to handle sparsity, high- 
dimensionality, and nonstationarity in traffic time series and seldom consider the temporal 
dependence between traffic states. To address these issues, this work presents a Hankel 
temporal matrix factorization (HTMF) model using the Hankel matrix in the lower dimen-
sional spaces under a matrix factorization framework. In particular, we consider an alter-
nating minimization scheme to optimize the factor matrices in matrix factorization and the 
Hankel matrix in the lower dimensional spaces simultaneously. To perform traffic state 
forecasting, we introduce two efficient estimation processes on real-time incremental data, 
including an online imputation (i.e., reconstruct missing values) and an online forecasting 
(i.e., estimate future data points). Through extensive experiments on the real-world Uber 
movement speed data set in Seattle, Washington, we empirically demonstrate the superior 
forecasting performance of HTMF over several baseline models and highlight the advan-
tages of HTMF for addressing sparsity, nonstationarity, and short time series.
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1. Introduction
Traffic states of urban road networks reveal the efficiency of transportation systems, providing insights into 
urban transportation management. To enhance decision making and system efficiency, it is essential to collect 
historical and real-time traffic states from urban road networks in a fine-grained spatiotemporal resolution and 
then produce reliable forecasts for the near-future traffic states. Recent transportation innovations have signifi-
cantly simplified data-collection processes, making real-world traffic data accessible. For instance, the develop-
ment of sensing technologies enables the installation of location-based sensors on ride-sharing vehicles to gather 
the traffic states of urban road networks (Furuhata et al. 2013). In particular, Uber has launched the Uber move-
ment project to collect data on hourly traffic speeds from thousands of road segments (Hu et al. 2022).

To guarantee that high-quality decisions can be produced based on predictions, a sufficient number of samples 
is needed, meaning that a large number of ride-sharing vehicles is expected for sensing city-wide traffic states 
(Treiber and Kesting 2013, Zheng 2015). However, challenges such as insufficient sampling of ride-sharing vehi-
cles in total traffic (Chen et al. 2022) and spatiotemporal sparsity of human mobility patterns (Liu et al. 2022) lead 
to the prevalent issue of missing data being a substantial barrier to the prediction work. This phenomenon is for-
mally introduced as sparsity, in which only a small portion of the data are observed because of limitations in the 
data-collection process (Qin et al. 2021, Chen et al. 2022). Another challenge is the high-dimensionality problem. 
High-dimensional traffic data often exhibit the characteristic that most relevant information is concentrated in 
only a few dimensions, necessitating dimensionality-reduction algorithms.
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Moreover, traffic states exhibit strong temporal dependence with the current state being influenced by previ-
ous states and likely to impact future states. This dependence arises because of factors including traffic conges-
tion, fluctuating travel demand, and the dynamic nature of traffic flow. For example, peak-hour congestion can 
trigger traffic cascades that persist throughout the day. Modeling temporal dependence is crucial for capturing 
the underlying dynamics and trends that shape urban traffic states. Thus, to extract valuable insights from future 
traffic forecasts, addressing the issues of sparsity, high-dimensionality, and temporal dependence is essential. 
However, these aspects, especially the temporal dependence between traffic states, have received limited atten-
tion, and the key challenges persist.

Matrix factorization, a data-driven machine learning approach, can effectively learn from sparse data and 
accurately reconstruct missing or unobserved values. It also shows potential in modeling spatiotemporal traffic 
states. However, matrix factorization models alone lack temporal correlations, unsuitable for forecasting future 
traffic states. On multivariate time series, integrating autoregressive processes into matrix factorization reveals 
the power of identifying temporal patterns from incomplete or even sparse time series data (Yu et al. 2016, Chen 
and Sun 2021, Chen et al. 2022). This is because autoregressive processes enable the establishment of temporal 
correlations on time series data. However, real-world time series are usually nonstationary, demonstrating clear 
changing levels, periodicity, or seasonality. Hence, it is unreasonable to directly build up an autoregressive 
process on latent temporal factors in matrix factorization (Chen et al. 2022) as the autoregressive processes are 
well-suited to the time series that are relatively stationary. Fortunately, alternative methodologies have been 
developed considering temporal dependence in the context of high-dimensional data without necessitating sta-
tionary patterns. For instance, Zhang et al. (2021) propose a dynamic recommender system to forecast grocery 
store sales. They employ nonparametric smoothing techniques and extrapolation methods on latent temporal 
factors to capture the temporal dynamics. In this work, we propose using a Hankel matrix within the matrix fac-
torization framework to establish temporal correlations. This is because the Hankel matrix is flexible for automat-
ically characterizing temporal correlations and dynamics using factorization or nuclear norm minimization. In 
contrast, autoregression should be well-designed in the matrix factorization considering complicated time series 
behavior. Moreover, the Hankel matrix shows great potential for short time series forecasting because of the 
principle of Hankel completion.

The Hankel matrix arises from algebraic problems and has inspired considerable matrix/tensor completion 
algorithms (Cai et al. 2019, Sedighin et al. 2020). Its adoption in both machine learning and signal processing has 
many advantages: (1) it is an automatic delay embedding transformation (Yokota et al. 2018), (2) it enables effec-
tive matrix completion and recovery (Cai et al. 2019), and (3) it demonstrates the capability of correcting cor-
rupted columns in matrix completion tasks (Zhang and Wang 2019). The Hankel structure has found diverse 
applications, such as visual data inpainting (e.g., missing slices) (Yokota et al. 2018) and time series forecasting 
(Sedighin et al. 2020, Shi et al. 2020). It is naturally combined with low-rank matrix completion (Cai et al. 2019, 
Zhang and Wang 2019). Nevertheless, Hankel matrix factorization/completion has its limitations for large-scale 
problems because of the explicit construction of large-scale Hankel structures.

In this work, to address the high-dimensionality issue, we utilize the Hankel structure and build up a Hankel 
matrix in the lower dimensional latent spaces under a matrix factorization framework. We develop a novel Han-
kel temporal matrix factorization (HTMF) model, which offers several advantages over existing methods, such 
as those proposed in Yu et al. (2016), Chen and Sun (2021), and Chen et al. (2022). These existing methods corre-
late temporal factors through an autoregressive process in their temporal matrix factorization (TMF) models, 
whereas our HTMF model leverages a Hankel matrix on latent temporal factors to automatically achieve tempo-
ral modeling, which has the following benefits: (1) handling real-world nonstationary time series that demon-
strate strong cyclical patterns and local time series trends; (2) estimating missing columns or even forecasting 
incoming columns in terms of spatiotemporal traffic states, analogous to the capability of existing TMF models; 
(3) presenting an efficient and economic representation on lower dimensional latent temporal factors and demon-
strating the capability of handling large-scale and high-dimensional data; and (4) being suitable for short time 
series forecasting by using the latent Hankel matrix instead of using Hankel structures on the data space as in 
Yokota et al. (2018), Sedighin et al. (2020), and Shi et al. (2020). To the best of our knowledge, most Hankel 
matrix–related algorithms are built on the data space, and HTMF is the first matrix factorization algorithm that 
establishes the Hankel matrix in the lower dimensional spaces of matrix factorization.

Overall, our work makes the following contributions: (1) We propose an HTMF model for forecasting sparse, 
high-dimensional, and temporal-dependent traffic states. A Hankel matrix built on latent temporal factors of 
matrix factorization allows an efficient estimation of temporal dynamics. To solve the model, we develop an 
alternating minimization scheme, including the conjugate gradient routine for estimating the spatial and tempo-
ral factor matrices and the hard thresholding process on the Hankel matrix. (2) We introduce both online 

Chen, Zhao, and Cheng: Forecasting Urban Traffic States with HTMF 
2 INFORMS Journal on Computing, Articles in Advance, pp. 1–17, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

45
.1

54
.1

4.
25

3]
 o

n 
17

 S
ep

te
m

be
r 

20
24

, a
t 1

5:
27

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



imputation and online forecasting methods for traffic state estimation with real-time incremental data. The online 
imputation method reconstructs missing values in the incremental data, whereas the online forecasting method 
forecasts near-future traffic states. (3) We test the performance of HTMF using the Seattle Uber movement speed 
data set, which is high-dimensional and sparse. Results show that HTMF outperforms several baseline models in 
handling nonstationarity, sparsity, and short time series.

In the rest of this paper, Section 2 reviews related studies. Section 3 introduces the HTMF model based on 
matrix factorization and the Hankel matrix. For traffic state forecasting, we propose both online imputation and 
forecasting methods for real-time incremental traffic state data. Section 4 reports numerical results. Section 5 con-
cludes the paper.

2. Literature Review
Substantial progress has been made in the past decades in developing computationally efficient machine learn-
ing algorithms to forecast spatiotemporal traffic. Despite the considerable growth and richness of the existing lit-
erature on traffic forecasting, a compelling question persists: how can high-dimensional and sparse traffic time 
series be forecasted?

2.1. Time Series Forecasting with Missing Values
Recently, various time series forecasting approaches have been developed, including but not limited to the clas-
sic statistical methods, such as autoregressive models (Hamilton 1994) and deep learning methods (Lim and Zoh-
ren 2021). Nevertheless, most of these are not well-suited to forecasting incomplete time series data as the 
phenomenon of missing data makes the forecasting task more complicated. Because of the difficulty of modeling 
sparse time series, past efforts devoted to this topic are limited. Anava et al. (2015) provide an autoregressive pre-
dictor for generating the time series from incomplete data. Whereas some preliminary research on deep learning 
finds a solution that first imputes missing values and then forecasts time series on the reconstructed data (Che 
et al. 2018), Tang et al. (2020) propose to jointly model local and global temporal dynamics of multivariate time 
series from partial observations. These methods do not satisfy the modeling needs for handling complicated 
missing data patterns (Chen and Sun 2021) and high dimensionality (Sen et al. 2019). In some cases, the high 
dimensionality could complicate the time series forecasting with missing values, posing methodological 
challenges.

Complementary to the above methods, another direction stimulated by autoregression and matrix/tensor fac-
torization models shows great potential for modeling sparse time series. Xiong et al. (2010) demonstrate the 
importance of temporal dynamics when modeling collaborative filtering with tensor factorization and temporal 
smoothing. Following that idea, Yu et al. (2016) present a temporal regularized matrix factorization by integrat-
ing a univariate autoregressive process into a matrix factorization framework, and Gultekin and Paisley (2018) 
introduce an online matrix factorization that can learn low-dimensional embeddings and produce recursive esti-
mates through an autoregressive process. Such models address the sparsity issue and are well-suited to high- 
dimensional time series. Beyond these models, Chen and Sun (2021) propose a Bayesian temporal matrix/tensor 
factorization framework by utilizing the same principle, and the core of temporal modeling is the vector autore-
gression (VAR) process. However, because the stationarity requirement of real-world time series does not always 
hold, these methods still cannot fit the practical needs. To this end, Chen et al. (2022) reinforce these methods 
and address the nonstationarity issue by considering the differencing operations (e.g., seasonal differencing) 
when using autoregressive processes in matrix factorization. The authors propose the TMF model that tackles 
both high dimensionality and sparsity; however, differencing operations such as first order differencing and sea-
sonal differencing are not flexible enough to eliminate the nonstationarity of time series.

2.2. Spatiotemporal Traffic Imputation and Forecasting
Spatiotemporal traffic data are usually incomplete because of spatial and temporal sparsity, for example, the 
sparsity characteristics of Uber movement data. Many approaches have been proposed for imputing missing or 
unobserved traffic data in the spatiotemporal context. Examples include principle component analysis (Li et al. 
2013), the multioutput Gaussian process (Rodrigues et al. 2018), Bayesian tensor factorization (Chen et al. 2019), 
low-rank tensor completion (Chen et al. 2020), Bayesian TMF (Chen and Sun 2021), etc. Beyond the imputation 
task, TMF models with VAR in the lower dimensional latent spaces are illustrated to be effective for the spatio-
temporal traffic forecasting on sparse data (Chen and Sun 2021, Chen et al. 2022). TMF models bridge the gap 
between imputation and forecasting with missing values because they can learn low-dimensional spatiotemporal 
patterns and perform forecasting without imputation.
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3. Problem Definition and Methodology
This section introduces the problem and develops an HTMF model for spatiotemporal traffic state forecasting. 
The HTMF model consists of a spatial factor matrix, a temporal factor matrix, and a Hankel matrix. In particular, 
HTMF establishes a Hankel matrix on the temporal factor matrix for exhibiting lower dimensional temporal pat-
terns. To adopt the proposed model to traffic state forecasting tasks, we finally elaborate on the forecasting mech-
anism of HTMF, including both online imputation and online forecasting for real-time incremental traffic state 
data.

3.1. Problem Definition
Let Y ∈ RN×T with columns y1, : : : , yT ∈ R

N represent the traffic state measurements collected from N road seg-
ments with T time steps (i.e., time intervals with a certain resolution) and Ω denote the index set of observed 
entries in Y; then, the goal is to forecast yT+1, : : : , yT+δ,δ ∈ N

+ (δ�is the forecasting time horizon). Figure 1 illus-
trates the forecasting task.

For traffic-state forecasting, we aim at simultaneously handling the following characteristics of traffic state 
data: (1) high-dimensionality by which data are of high dimension and large scale with thousands of road seg-
ments and (2) sparsity by which only a small fraction of data are observed. To obtain satisfactory forecasting, we 
must address the following concerns: (1) how to perform traffic-state forecasting with a small fraction of observa-
tions and (2) how to apply the TMF framework to a large-scale and high-dimensional setting.

Unlike the classic traffic-forecasting approaches, which require fully observed data as inputs, our work 
addresses traffic-state forecasting on imperfect and sparse data. In the following, we consider a data-driven 
approach by applying the low-rank matrix factorization framework, expecting to simultaneously address the 
high-dimensionality and sparsity issues in traffic-state data.

3.2. Model Description
The collection of extensive traffic-state data from urban road networks has necessitated the exploration of data- 
driven methodologies for practical applications and prompted a reevaluation of strategies to effectively address 
the challenges posed by high dimensionality and sparsity (Chen and Sun 2021). Given Y ∈ RN×T, the objective is 
to reconstruct missing entries in Y with partial observations. Let PΩ(Y) denote the orthogonal projection sup-
ported on the observed index set Ω, defined as

[PΩ(Y)]it �
yit, if (i, t) ∈Ω,
0, otherwise,

(

(1) 

where i � 1, : : : , N and t � 1, : : : , T. Notably, [·]it denotes the (i, t)th entry of a matrix. Low-rank matrix factoriza-
tion is one of the most classic approaches for achieving the reconstruction objective (Mnih and Salakhutdinov 
2007, Koren et al. 2009), taking the form of

min
W,X

1
2 ‖PΩ(Y �W⊤X)‖2F +

ρ

2 (‖W‖
2
F + ‖X‖

2
F), (2) 

where R < min{N, T} is the low rank of this matrix factorization. Symbols W ∈ RR×N and X ∈ RR×T denote spatial 
and temporal factor matrices, respectively. The symbol ‖ · ‖F denotes the Frobenius norm of a matrix. Symbol ρ�is 
the trade-off parameter for regularization.

However, the standard matrix factorization cannot incorporate local temporal correlations into global low- 
rank patterns. To this end, Yu et al. (2016), Chen and Sun (2021), and Chen et al. (2022) develop some TMF 

Figure 1. (Color online) Illustration of the Traffic-State Forecasting Task on the Incomplete Data y1, : : : , yT 
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models that apply the dth order VAR process, which can be summarized as the following optimization problem:

min
W, X, {A}dk�1

1
2 ‖PΩ(Y �W⊤X)‖2F +

ρ

2 (‖W‖
2
F + ‖X‖

2
F) +
λ

2
XT

t�d+1

�
�
�
�
�

�
�
�
�
�
xt �

Xd

k�1
Akxt�k

�
�
�
�
�

�
�
�
�
�

2

2

, (3) 

where the vector xt, ∀t ∈ {1, : : : , T} is the tth column (time snapshot) of X and Ak ∈ RR×R, k � 1, : : : , d are the coeffi-
cient matrices of VAR on temporal factors. The symbol ‖ · ‖2 denotes the ℓ2-norm of a vector. ρ�and λ�are the 
trade-off parameters for regularization. Because VAR is important in temporal modeling, TMF allows one to 
make accurate missing data imputations and effective high-dimensional time series forecasting (Yu et al. 2016, 
Chen and Sun 2021). However, one dominant assumption—stationarity of time series—poses a bottleneck for 
the broad use of TMF.

In this work, we intend to seek an effective temporal modeling technique and take advantage of the Hankel 
matrix in a TMF framework to address the nonstationarity of traffic states. In particular, we construct a Hankel 
matrix on the temporal factor matrix X utilizing Definition 1 (Zhang et al. 2018, Zhang and Wang 2019).

Definition 1 (Hankel Matrix). Given a multivariate time series data matrix X ∈ RR×T with columns x1, : : : , xT ∈ RR 

and a window length d ∈ N+, let Hd : RR×T→ R(dR)×m be a linear operator that maps X into the following Hankel 
matrix:

Hd(X) �

x1 x2 ⋯ xm

x2 x3 ⋯ xm+1

⋮ ⋮ ⋱ ⋮
xd xd+1 ⋯ xT

2

6
6
6
6
4

3

7
7
7
7
5
∈ R(dR)×m, (4) 

with m � T� d+ 1.

As is well-known in the time series analysis, VAR usually assumes the time series to be stationary. Therefore, 
Hankel representation produces temporal correlations that VAR is unable to produce efficiently, and it is reason-
able to postulate that the Hankel matrix can reinforce temporal modeling. In this work, our HTMF model follows 
the form

min
W, X

1
2 ‖PΩ(Y �W⊤X)‖2F +

ρ

2 (‖W‖
2
F + ‖X‖

2
F)

s:t: rank(Hd(X)) � R,
(5) 

where rank(·) denotes the rank of a matrix. Hd(X) is assumed to be rank-R with R ≤ T� d� 1. This implies that 
the (dR) ×m Hankel matrix on lower dimensional latent temporal factors is an efficient and economic representa-
tion. Alternatively, if one builds a Hankel matrix on the original traffic state data Y, there would be a Hankel 
matrix of size (dN) ×m, possibly consuming high memory usage and computational cost. Moreover, the HTMF 
model captures temporal correlations within d window length through the Hankel structure (i.e., the same blocks 
on the antidiagonal), and the window length d is usually smaller than the number of time steps per day or week; 
thus, the Hankel structure in HTMF only captures local temporal correlations, which makes it possible for 
HTMF to handle real-world nonstationary time series. Figure 2 illustrates the HTMF, whose ingredients include 
a spatial factor matrix, a temporal factor matrix, and a Hankel matrix.

Figure 2. (Color online) Illustration of HTMF for Modeling Sparse Traffic-State Data 
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The basic idea of HTMF is closely related to the low-rank Hankel matrix completion proposed by Cai et al. 
(2019). Matrix completion refers to recovering a matrix from its partially revealed entries. With no further 
assumptions, matrix completion is an ill-posed problem that does not even have a unique solution. Thus, to 
develop efficient solution algorithms, researchers often have to exploit the inherent simplicity of the target 
matrix. A prominent example is the low-rank matrix completion, in which the target matrix is assumed to be 
low-rank (Chen et al. 2021). Based on the property of low rankness, various efficient algorithms are designed 
(Chen and Chi 2018). Going back to the HTMF, the constraint in the optimization problem (5) is expected to 
achieve temporal modeling through the low rankness of the Hankel matrix. To solve the optimization problem 
in (5), we introduce an auxiliary variable F ∈ RR×T to guarantee the low rankness of the Hankel matrix. The 
model now becomes

min
W,X,F

1
2 ‖PΩ(Y �W⊤X)‖2F +

ρ

2 (‖W‖
2
F + ‖X‖

2
F) +
γ

2 ‖F�X‖2F

s:t: rank(Hd(F)) � R,
(6) 

where γ�is the trade-off parameter for the additional regularization.
Regarding this model, we consider an alternating minimization scheme. Let f denote the objective function of 

Problem (6); then, our scheme can be basically summarized as follows:

Wℓ+1 � W
�
�
�
�
∂f
∂W
� 0

� �

,

Xℓ+1 � X
�
�
�
�
∂f
∂X
� 0

� �

,

Fℓ+1 � arg min
rank(Hd(F))�R

1
2 ‖F � Xℓ+1‖

2
F,

8
>>>>>>>><

>>>>>>>>:

(7) 

where ℓ�is the iteration counter.
In our original optimization problem, we have two variables, that is, spatial factor matrix W and temporal factor 

matrix X. However, the variable X is associated with both partially observed matrix factorization and low-rank 
Hankel matrix constraints. Thus, finding a closed-form solution for X becomes challenging. Problem (6) presents a 
readily implementable formula that incorporates a weight parameter γ�to guarantee that X and F are as close as 
possible. If F is a numerical approximation of X, depending on γ, then Problem (6) is consistent with Problem (5).

The partial derivative of f with respect to W can be written as

∂f
∂W
� �XP⊤Ω(Y �W⊤X) + ρW, (8) 

where ∂f
∂W � 0 admits a closed form, least squares solution with respect to W (Koren et al. 2009). Alternatively, we 

can use the conjugate gradient method to obtain an approximated numerical solution to W from the generalized 
Sylvester equation (Chen et al. 2022):

XP⊤Ω(W
⊤X) + ρW � XP⊤(Y): (9) 

If one uses the conjugate gradient method to find an approximated solution to the above equation, it should con-
vert the matrix equation into a standard system of linear equations. First, we introduce an operator to represent 
the left-hand side of the equation as follows:

Lw(W)¢vec(XP⊤Ω(W
⊤X) + ρW), (10) 

where vec(·) denotes the vectorization operator. Then, with this definition in place, we apply the conjugate gradi-
ent method (Golub and Van Loan 2013) as an efficient matrix equation solver. Because (10) is a standard system 
of linear equations whose matrix is real symmetric and positive definite, it satisfies the criteria of the conjugate 
gradient method. As revealed by Rao et al. (2015), the conjugate gradient–based alternating minimization scheme 
for matrix factorization is efficient and scalable to large applications. Notably, the conjugate gradient method is 
known to search for the solution to a system of linear equations with a relatively small number of iterations (e.g., 
5 or 10). We summarize the algorithm of the conjugate gradient for estimating spatial factor matrix W in 
Algorithm 1.
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Algorithm 1 (Conjugate Gradient for Estimating Spatial Factor Matrix W) 
1: Input: Data matrix Y, Ω as the observed index set, initialized spatial factor matrix W, temporal factor matrix 

X, and the maximum iteration nw.
2: Initialize w0 by the vectorized W.
3: Compute residual vector r0 � vec(XP⊤Ω(Y))�Lw(W), and let q0 � r0.
4: for ℓ � 0 to nw� 1 do
5: Convert vector qℓ�into matrix Qℓ.
6: Compute αℓ �

r⊤ℓ rℓ
q⊤
ℓ
Lw(Qℓ)

.
7: Update wℓ+1 �wℓ +αℓqℓ.
8: Update rℓ+1 � rℓ � αℓLw(Qℓ).
9: Compute βℓ �

r⊤ℓ+1rℓ+1
r⊤
ℓ

rℓ .
10: Update qℓ+1 � rℓ+1 + βℓqℓ.
11: end for
12: Convert vector wnw into matrix W.
13: Output: Spatial factor matrix W.

With respect to the temporal factor matrix X, we can write down the partial derivative of f and obtain the solu-
tion to X from the following matrix equation:

∂f
∂X
� �WPΩ(Y �W⊤X) + ρX + γ(X � F) � 0, (11) 

or equivalently,
WPΩ(W⊤X) + (ρ + γ)X �WPΩ(Y) + γF: (12) 

To solve this matrix equation with the conjugate gradient method, we can also define an operator that represents 
the vectorization of the left-hand part of the equation:

Lx(X) � vec(WPΩ(W⊤X) + (ρ + γ)X), (13) 

and then, we follow a similar routine as shown in Algorithm 1 for estimating the approximated solution to X.
In HTMF, rank-R Hankel matrix Hd(F) in the constraint allows one to build temporal correlations implicitly, 

and it follows a hard singular value thresholding (HSVT; see Definition 2) process (Cai et al. 2019).

Definition 2 (HSVT). For any X ∈ Rm×n, the hard thresholding operator T r(·) with positive integer r < min{m,n}
is defined as

T r(X) �
Xr

k�1
σkukv⊤k , (14) 

where X �
Pmin{m, n}

k�1 σkukv⊤k is the singular value decomposition (SVD) of X and its singular values are sorted as 
σ1 ≥ σ2 ≥⋯≥ σmin{m, n}.

Definition 3 (Inverse Hankel Matrix). Following Definition 1, given any matrix Z ∈ R(dR)×m, m � T� d+ 1, the (i, j)th 
entry of H�1

d (Z) ∈ R
R×T is defined as follows:

[H�1
d (Z)]ij �

1
wj

X

k1+k2�j+1
z(k1�1)R+i, k2 , (15) 

where wj denotes the number of elements in the jth antidiagonal of a d × m matrix.

Let the SVD of Hd(X) be

Hd(X) �USV⊤ �
Xmin{dR,m}

r�1
σrurv⊤r , such that σ1 ≥ σ2 ≥⋯≥ σmin{dR, m}, (16) 

and then, the HSVT with any positive integer R < min{dR, m} can be written as follows:

T R(Hd(X)) �
XR

r�1
σrurv⊤r : (17) 

Chen, Zhao, and Cheng: Forecasting Urban Traffic States with HTMF 
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In the iterative process, the result of (17) is used to update the temporal factor matrix:

F :� H�1
d (T R(Hd(X))), (18) 

where H�1
d : R(dR)×m→ RR×T is the inverse operator of Hd : RR×T→ R(dR)×m. Because Hd is injective, H�1

d follows 
from Zhang and Wang (2019) that the entry of an inverse Hankel matrix is the average of certain antidiagonal 
entries in the Hankel matrix (see Definition 3). Once the result of HSVT is available, the inverse operator can con-
vert a given Hankel matrix into the expected form.

We illustrate the alternating minimization scheme for the HTMF model in Figure 3. For the spatial factor 
matrix W and the temporal factor matrix X, we use the conjugate gradient method to approximate the least 
squares solution. To fulfill the temporal modeling on temporal factors, we first implement HSVT on the Hankel 
matrix and then update the temporal factor matrix by the result of HSVT. The detailed algorithm of HTMF is 
summarized in Algorithm 2.

Algorithm 2 (HTMFðY , V,d, R,nÞ) 
1: Input: Data matrix Y ∈ RN×T, Ω as the observed index set, d as the window length, R as the low rank 

(R ≤ min{N, T� d� 1}), and n as the maximum iteration.
2: Initialize W, X.
3: for ℓ � 0 to n � 1 do
4: Compute W from (9) with conjugate gradient.
5: Compute X from (11) with conjugate gradient.
6: Implement HSVT on Hd(X) by (17).
7: Update F by (18).
8: end for
9: Output: Spatial factor matrix W and temporal factor matrix X.

Figure 4 presents the empirical time complexity of HTMF (rank R � 10) under various data lengths. The syn-
thetic data are generated randomly with the size NT � 1 × 107, 2 × 107, : : : , 10 × 107. The window length of HTMF 
is set as d � 10 and 20, respectively. The results indicate that the time complexity exhibits a near-linear pattern to 
the data size. This finding implies that the computing time of HTMF is expected to increase linearly as the data 
set size expands, thereby demonstrating the predictability of computing time with respect to data volume.

3.3. Forecasting Algorithm
To cater for real-world traffic-state forecasting needs, we focus on a rolling forecasting task as the mechanism 
illustrated in Figure 5. As can be seen, the incremental input data are {y1, : : : , y3}, {y1, : : : , y5}, {y1, : : : , y7}, corre-
sponding to the first, second, and third rolling times, respectively. At each rolling time, the forecasting time hori-
zon is set to δ�� 2, and therefore, we can finally gather {ŷ4, : : : , ŷ9} as forecasts in the rolling forecasting task.

Because the incremental input data have a certain number of missing values, the estimation tasks include both 
online imputation and online forecasting processes. Regarding the imputation process, the online imputation 
model is required to reconstruct missing values from the real-time incremental observations efficiently. To carry 
out an efficient estimation, we assume that the online imputation admits a matrix factorization, formulated as

min
X

1
2 ‖PΩ̃(Ỹ �W⊤X)‖2F +

ρ

2 ‖X‖
2
F, (19) 

where Ỹ is the incremental traffic state data and Ω̃ is the corresponding observed index set. The fixed variable 
W is estimated from the original traffic state data. Clearly, this optimization problem is convex, and thus, X has 
an optimal solution. Let g denote the objective of this optimization problem; then, we have the following 

Figure 3. (Color online) Illustration of the Alternating Minimization Scheme for Implementing HTMF 

Note. Starting from the input data and initial parameters, we learn an HTMF model by updating the involved variables iteratively.
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matrix equation:

∂g
∂X
��WPΩ̃(Ỹ �W⊤X) + ρX � 0: (20) 

This is similar to the above problem associated with the temporal factor matrix. In this matrix equation, we esti-
mate variable X through the conjugate gradient method. Accordingly, the missing entries in Ỹ can be recon-
structed by W⊤X.

The online forecasting in this work has two procedures. We first build an augmented temporal factor matrix as 
X̃ � [X 0R×δ ] in which the last δ�columns are filled with zeros (i.e., corrupted columns). In a Hankel matrix rep-
resentation, the estimation of the last δ�unknown columns is equivalent to the reconstruction of Hd(X̃) from par-
tially revealed entries. Therefore, the online forecasting process admits a Hankel matrix factorization, which is 
formulated as follows:

min
V

1
2 ‖PΩx(Hd(X̃)�UV)‖2F, (21) 

where Ωx stands for the observed index set of the Hankel matrix Hd(X̃). In particular, we use U ∈ R(dR)×R that 
consists of the left singular vectors {u1, : : : , uR} of Hd(X) as the fixed variable (obtained in Algorithm 2). The solu-
tion to (21) can be derived from the following matrix equation:

U⊤PΩx(UV) �U⊤PΩx(Hd(X̃)): (22) 

Let

Lv(V) � vec(U⊤PΩx(UV)), (23) 

be an operator associated with variable V; then, we can estimate the solution to V through the conjugate gradient 
method. In this case, together with the inverse Hankel operation, estimating V allows one to produce the fore-
casts of the last δ�columns in X̃ . Thus, the Hankel matrix is an effective representation for automatically filling in 
the last δ�columns of the temporal factor matrix X̃ because of its inherent antidiagonal structure. Both online 
imputation and online forecasting processes do not consume too much computing resources. The convex pro-
blems can be solved efficiently in the rolling forecasting task.

Figure 5. (Color online) Graphic Scheme of the Rolling Forecasting on Traffic States 

Note. The snapshot yt ∈ R
N , ∀t ∈ {1, : : : , T} refers to the tth column of Y ∈ RN×T.

Figure 4. (Color online) Empirical Time Complexity of HTMF on the Synthetic Data 

Notes. The HTMF model is tested 10 times on each randomly generated data, and average results are reported. Note that the data size is NT, 
where N � 103 and T ∈ {1 × 104, 2 × 104, : : : , 10 × 104}.
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Finally, we emphasize that online imputation is unnecessary for the online forecasting task. However, in the 
rolling forecasting scheme, it becomes essential to capture the temporal factors from the input incremental data 
that contains missing values. This process enables us to obtain low-dimensional latent temporal factors repre-
sented as a sequence of time series. By leveraging the Hankel structure, we can directly forecast future latent tem-
poral factors and, subsequently, employ the multiplication of spatial and temporal factors to generate traffic state 
forecasts.

4. Experiments on Uber Movement Speed Data
In this section, we use the Seattle Uber movement speed data set to evaluate our method. The nature of traffic- 
state measurements, such as the Uber movement data capturing hourly speed per road segment, often exhibits a 
pronounced indication of potential periodic and seasonal temporal patterns because of different mechanisms. 
These mechanisms encompass distinct time ranges as well as weather and seasonality. Each mechanism operates 
on different time scales within periodic cycles with some exhibiting long-term patterns and others displaying 
short-term variations. However, matrix factorization serves as a similarity-based model. For instance, it can 
leverage users’ latent factors in recommender systems to estimate the potential ratings of users with similar pre-
ferences. Thus, it can be used to predict traffic states. Specifically, in the HTMF model, latent factors are 
employed to capture the global seasonality and trends of urban traffic states. The Hankel structure within HTMF 
further enhances the local trends observed in time series data. Consequently, the proposed forecasting method 
can consider both global (long-term) and local (short-term) time series trends of urban traffic states.

We compare the proposed HTMF model with state-of-the-art baseline models. Our experiments used a hard-
ware setup featuring a T4 GPU with 16 GB of RAM. We use the mean absolute percentage error (MAPE) and the 
root mean square error (RMSE) as the performance metrics, defined as follows:

MAPE � 1
n
Xn

i�1

|yi � ŷi |

yi
× 100, RMSE �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
Xn

i�1
(yi � ŷi)

2

s

, 

where n is the total number of estimated values and yi and ŷi are the actual value and the estimate, respectively.

4.1. Sparse Urban Traffic State Data Set
The Uber movement speed data set collects hourly traffic speeds from thousands of road segments in urban 
areas. However, because of insufficient sampling and the limited penetration of ride-sharing vehicles in total traf-
fic, we only have access to a small fraction of observed speeds even in an hourly resolution. We use the Seattle 
Uber movement speed data collected from 63,490 road segments during the first 10 weeks of 2019 (i.e., 
1,680 hours) for the following experiments, and therefore, the size of this data set is 63,490× 1,680. The data set is 
sparse and only contains 12.65% of speed observations, implying that 87.35% of entries in the data matrix are 
unobserved.

Figure 6 shows the missing rates of the data set changing over time during the 10 weeks, in which each missing 
rate at time t corresponds to the ratio of missing entries in yt (the tth column of Y). It reveals a clear pattern that 

Figure 6. (Color online) The Missing Rate Curve of the Seattle Uber Movement Speed Data Set 

(a) During the ten weeks

(b) During the first two weeks
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the data set has more traffic speed observations during peak hours than during off-peak hours. This is because 
urban road networks usually serve more vehicles during peak hours. The extreme case is that the missing rates 
almost reach 100% at midnight, and it seems to be the blackout missing at some consecutive time steps (i.e., cor-
rupted columns). In particular, we summarize the missing rate of the data set at each road segment in Table 1. 
The ratio is determined by the division of the number of road segments in a certain missing rate range by the 
total number of road segments.

From Table 1, we observe that only 2.92% of road segments have more than 80% of speed observations, that is, 
0:91%+ 2:01% � 2:92%. There are 71.47% of road segments that reveal the missing rates greater than 90%. Thus, 
it poses both practical and methodological challenges for performing time-series forecasting on such sparse 
traffic-state data.

In the following experiments, we first evaluate the model with nine-week data as the training set and one- 
week data as the test set. We set the forecasting time horizons as δ � 1, 2, 3, 4, respectively. Then, to test the model 
on shorter time series, we set the training set as eight-, seven-, six-, five-, and four-week data, respectively. When 
implementing Algorithm 2, we initialize the factor matrices W and X with small Gaussian random values, that 
is, 1

100N (0, 1), where N (·) denotes the Gaussian distribution.

4.2. Baseline Models
To evaluate the performance of our HTMF model, we compare it with (1) temporal regularized matrix factoriza-
tion (TRMF) proposed by Yu et al. (2016), (2) Bayesian TMF (BTMF) proposed by Chen and Sun (2021), (3) non-
stationary TMF (NoTMF) proposed by Chen et al. (2022), and (4) circulant tensor nuclear norm minimization 
(CTNNM) proposed by Liu and Zhang (2022) and Liu (2022). NoTMF integrates the VAR process on seasonal 
differenced temporal factors into the matrix factorization, which can overcome both nonstationarity and high- 
dimensionality issues. NoTMF has been empirically demonstrated to be the state of the art over other TMF mod-
els, such as TRMF and BTMF. Another reason for using NoTMF as the baseline is that the comparison allows one 
to reveal the significance of the Hankel structure on temporal factors. The data and source code for reproducing 
the results can be found in Chen et al. (2024).

4.3. Forecasting Results
We now discuss HTMF’s forecasting performance. Because the values of rank R and window length d are critical to 
HTMF’s performance, we first tune these hyperparameters by setting R � 10, 20, 30, 40, 50, 60 and d � 6, 12, 18, 24. 
Table 2 reports the results, in which the best results are highlighted in bold fonts. It shows that the best forecasting 
performance is mostly achieved with the rank R � 60. In HTMF with a relatively large rank R, the constructed Han-
kel matrix on latent factors contributes to more accurate forecasting performance because the complicated time 
series trends can be characterized by latent factors, including dominant and secondary factors with an appropriate 
rank R. It should be noted that, whereas it is possible to further increase the value of R, the performance improve-
ment becomes marginal as R increases. Additionally, a higher rank poses a greater risk of overfitting, which can 
adversely impact the model’s performance despite the increased computational cost. Therefore, in practical applica-
tions, it is advisable to select an appropriate rank rather than aiming for the peak value of R. If the forecasting task 
has a relatively small time horizon (e.g., δ�� 1), HTMF with different window lengths shows no significant differ-
ences. When the time horizon changes to δ�� 3 and 4, HTMF with a longer window length performs significantly 
better than that with a shorter window length. The window length d of HTMF is significant for capturing time- 
evolving coefficients of latent factors implicitly, and its setting also depends on forecasting purposes. Based on the 
results here, we set R � 60 in the subsequent experiments. The setting of window length d depends on the forecast-
ing horizon δ, and we can usually set d > δ. Both parameters can be easily validated from a small set of candidate 
parameters.

Table 1. Summary of the Ratio of Road Segments with Data with the Minimum Observation Rate of the Uber Movement 
Speed Data Sets

Missing rate Number of road segments Ratio, % Missing rate Number of road segments Ratio, %

(0, 10%] 579 0.91 (50%, 60%] 1,765 2.78
(10%, 20%] 1,273 2.01 (60%, 70%] 1,951 3.07
(20%, 30%] 1,088 1.71 (70%, 80%] 2,687 4.23
(30%, 40%] 1,248 1.97 (80%, 90%] 5,892 9.28
(40%, 50%] 1,629 2.57 (90%, 100%] 45,378 71.47
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In contrast to the autoregressive process, the Hankel structure is an automatic delay embedding transform for 
time series modeling (Sedighin et al. 2020), which possibly shows superior performance for forecasting short 
time series (Shi et al. 2020). In our specification, we use training data of different time ranges to test HTMF and 
the other four baseline models. Table 3 summarizes all the models’ forecasting performance with different data 
ranges, in which the best results are highlighted in bold fonts. When using the nine- and eight-week data as the 
training sets, it shows that HTMF achieves competitive results as NoTMF at different time horizons. However, 
when fewer data are used for training, HTMF significantly outperforms NoTMF in both performance metrics, 
highlighting the importance of implicit Hankel completion for relatively shorter time series. Notably, in the roll-
ing forecasting process, the forecasting task is converted into a Hankel completion task via the use of matrix fac-
torization with a fixed dictionary matrix U. The superiority of HTMF becomes remarkable over NoTMF when 
the training process only covers seven-, six-, five-, and four-week data. Notably, as the length of training data 
becomes shorter, HTMF does not show a significant performance loss as NoTMF. These empirically demonstrate 
that, compared with the VAR process in NoTMF, the Hankel structure in HTMF is more effective for handling 
short time series. Table 3 also clearly shows the superiority of HTMF over TRMF, BTMF, and CTNNM.

For analyzing the convergence pattern of HTMF, we visualize the loss function values in the iterative process 
with different ranks (i.e., R � 30, 40, 50, 60) and different lengths of training data in Figure 7. The figure shows 

Table 3. Forecasting Performance (MAPE/RMSE) of HTMF and Baseline Models

Horizon Nine weeks Eight weeks Seven weeks Six weeks Five weeks Four weeks

HTMF δ�� 1 10.26/3.27 10.26/3.26 10.31/3.29 10.34/3.32 10.52/3.37 10.50/3.41
δ�� 2 10.35/3.31 10.40/3.32 10.49/3.35 10.52/3.36 10.52/3.39 10.63/3.47
δ�� 3 10.53/3.38 10.46/3.36 10.55/3.39 10.61/3.40 10.64/3.45 10.69/3.50
δ�� 4 10.50/3.39 10.52/3.41 10.65/3.43 10.66/3.44 10.74/3.49 10.74/3.52

NoTMF δ�� 1 10.39/3.31 10.54/3.36 10.64/3.41 10.81/3.47 11.16/3.60 11.59/3.76
δ�� 2 10.41/3.34 10.52/3.38 10.62/3.42 10.79/3.48 11.12/3.61 11.66/3.82
δ�� 3 10.44/3.35 10.53/3.41 10.71/3.46 10.83/3.51 11.10/3.61 11.69/3.84
δ�� 4 10.47/3.37 10.56/3.42 10.68/3.46 10.88/3.54 11.15/3.65 11.45/3.76

TRMF δ�� 1 11.10/3.81 11.12/3.86 11.23/3.96 11.29/3.99 11.38/4.02 11.51/4.05
δ�� 2 11.03/3.58 10.96/3.59 11.10/3.65 11.20/3.71 11.27/3.75 11.36/3.82
δ�� 3 11.54/4.17 11.84/4.31 11.62/4.29 11.65/4.21 11.90/4.38 11.96/4.42
δ�� 4 11.07/3.64 11.11/3.67 11.14/3.72 11.31/3.79 11.38/3.83 11.39/3.86

BTMF δ�� 1 12.44/4.03 12.31/4.01 12.50/4.06 12.95/4.27 13.16/4.23 12.44/4.00
δ�� 2 12.79/4.23 12.59/4.03 12.70/4.10 12.75/4.14 13.44/4.33 12.71/4.09
δ�� 3 12.22/3.87 12.12/3.85 12.51/3.96 13.02/4.16 12.87/4.13 12.03/3.88
δ�� 4 12.24/3.95 12.23/3.91 12.66/4.04 12.64/4.03 13.09/4.30 12.35/3.95

CTNNM δ�� 1 12.74/3.83 12.18/3.71 12.52/3.81 12.76/3.87 13.21/4.03 13.92/4.29
δ�� 2 12.97/3.90 12.46/3.78 12.81/3.88 13.16/3.96 13.56/4.08 14.09/4.28
δ�� 3 13.36/3.97 12.82/3.85 13.13/3.94 13.66/4.06 13.82/4.12 13.99/4.22
δ�� 4 13.58/4.03 13.14/3.92 13.38/3.99 13.73/4.07 13.82/4.14 13.92/4.23

Table 2. Forecasting Performance (MAPE/RMSE) of HTMF with Different Ranks and Window Lengths

Horizon Order R � 10 R � 20 R � 30 R � 40 R � 50 R � 60

δ�� 1 d � 6 10.97/3.47 10.53/3.33 11.04/3.54 10.62/3.40 10.69/3.46 13.44/4.62
d � 12 11.25/3.59 10.54/3.36 10.33/3.30 10.25/3.27 10.18/3.23 10.17/3.26
d � 18 11.13/3.56 10.50/3.37 10.31/3.32 10.33/3.28 10.24/3.27 10.26/3.27
d � 24 11.21/3.58 10.70/3.43 10.42/3.33 10.33/3.31 10.30/3.29 10.26/3.27

δ�� 2 d � 6 11.37/3.62 15.36/5.29 17.79/6.20 15.10/5.25 13.56/4.71 13.02/4.44
d � 12 11.40/3.62 10.73/3.44 10.54/3.38 10.48/3.37 10.54/3.42 10.51/3.42
d � 18 11.49/3.65 10.73/3.46 10.51/3.38 10.44/3.32 10.40/3.34 10.35/3.31
d � 24 11.38/3.62 10.78/3.47 10.62/3.40 10.44/3.36 10.53/3.37 10.38/3.32

δ�� 3 d � 6 12.37/3.96 14.39/4.96 13.21/4.49 11.75/3.88 13.62/4.59 15.19/5.12
d � 12 11.58/3.68 11.87/3.90 10.78/3.53 10.72/3.50 10.98/3.61 11.55/3.82
d � 18 11.50/3.64 10.98/3.54 10.84/3.52 10.55/3.40 11.50/3.78 10.67/3.46
d � 24 11.31/3.63 10.99/3.54 10.65/3.43 10.52/3.39 10.49/3.38 10.53/3.38

δ�� 4 d � 6 12.29/4.09 14.67/4.92 17.34/5.96 19.21/6.51 14.82/4.99 13.93/4.71
d � 12 11.50/3.70 11.54/3.84 10.74/3.53 12.29/4.12 11.18/3.74 10.88/3.59
d � 18 11.84/3.72 10.83/3.52 10.77/3.55 10.72/3.52 10.52/3.41 10.82/3.53
d � 24 11.58/3.66 10.98/3.55 10.84/3.50 10.69/3.45 10.66/3.49 10.50/3.39
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that the loss function of HTMF decreases rapidly in the first few iterations (e.g., smaller than 10 iterations). Then, 
in the subsequent iterations, the changes in loss function values become marginal. Therefore, the proposed 
HTMF model shows a very efficient convergence process. Observing the HTMF model with different ranks, the 
loss function values are relatively smaller when a greater rank is given.

Figure 8 shows the aggregated forecasts achieved by HTMF against the ground truth data with the nine-week 
training data. The results generated by HTMF are close to the ground truth data, demonstrating the capability of 
HTMF to accurately forecast the sparse traffic states. The forecasting results show both global (e.g., cyclical pat-
terns) and local (e.g., consistency of traffic flow) time series trends achieved by the Hankel completion in HTMF. 
Figure 9 plots speed observations and HTMF forecasts of some road segments. Considering the road segments 
with low missing rates, the forecasts achieved by HTMF capture accurate temporal dynamics, mostly benefiting 
from the sparse learning process on sparse time series data and the Hankel completion on latent temporal factors 
within HTMF. For those road segments whose speed observations are very limited, the forecasts achieved by 
HTMF are consistent with the traffic-state fact, namely, speeds are relatively low during peak hours and rela-
tively high during off-peak hours. These findings also reveal the effectiveness of integrating matrix factorization 
and Hankel representation for identifying temporal dynamics from sparse traffic-state data.

Figure 10 shows the statistical histograms of the ground truth data versus the forecasts achieved by HTMF 
with different missing rate ranges. For each missing rate range, we collect the speed observations of road 

Figure 7. (Color online) The Variations of HTMF’s Loss Functions with the Iterations on Different Data Sets 

(a) On 9-week training data (b) On 8-week training data

(c) On 7-week training data (d) On 6-week training data

(e) On 5-week training data (f) On 4-week training data
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segments whose missing rate of the test set is in that range. For road segments with lower missing rates, for 
example, (0, 10%] and (10%, 20%], the histograms present two peaks. Specifically, one peak is around the speed 
of 20 mph, whereas another is around the speed of 60 mph. This implies that, for the road segments with rela-
tively complete speed observations, both lower speeds of the congested traffic (possibly during peak hours) and 
higher speeds of the free-flow traffic (possibly during off-peak hours) are measured, revealing the bimode traffic 
states. Figure 10 shows that HTMF can accurately forecast both congested and free-flow traffic states. With the 
increase in missing rates, the phenomena of bimode traffic states are weakened. Overall, we can summarize that 
the forecasts achieved by HTMF are accurate to the ground truth data.

Figure 8. (Color online) Forecasting Results of HTMF with Different Time Horizons 

Note. Both ground truth data and HTMF forecasts are averaged over 741 road segments whose missing rates on the test set are less than 10%.

Figure 9. (Color online) Forecasting Results of HTMF with δ�� 4 

Notes. The 14 example time series correspond to 14 road segments. The scatters indicate the observed speeds, whereas the curves indicate the 
HTMF’s forecasts.
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5. Conclusion
This study revisits the challenging task of urban traffic state forecasting and addresses the sparsity and high- 
dimensionality issues inherent in city-wide traffic state data. To handle the traffic state data involving multiple 
characteristics, we present an HTMF model for sparse traffic state forecasting. The model consists of spatiotem-
poral factor matrices in a matrix factorization framework and a Hankel matrix in lower dimensional spaces. This 
HTMF model differs from the prior NoTMF model because NoTMF integrates VAR into the seasonal differenced 
temporal factors. In contrast, HTMF utilizes a Hankel matrix on the lower dimensional temporal factors to 
achieve temporal modeling. In this situation, HTMF does not require the stationarity of traffic states.

Figure 10. (Color online) The Histogram of Ground Truth Data and Forecasts Achieved by HTMF with δ�� 4 in the Test Set 

(a) Missing rate (0, 10%], 741 road segments (b) Missing rate (10%, 20%], 1,650 road segments

(c) Missing rate (20%, 30%], 1,432 road segments (d) Missing rate (30%, 40%], 1,551 road segments

(e) Missing rate (40%, 50%], 1,712 road segments (f) Missing rate (50%, 60%], 1,769 road segments

(g) Missing rate (60%, 70%], 2,076 road segments (h) Missing rate (70%, 80%], 3,365 road segments

(i) Missing rate (80%, 90%], 6,602 road segments (j) Missing rate (90%, 100%], 42,592 road segments

Note. The missing rate implies the ratio of missing values of road segments in the test set.

Chen, Zhao, and Cheng: Forecasting Urban Traffic States with HTMF 
INFORMS Journal on Computing, Articles in Advance, pp. 1–17, © 2024 INFORMS 15 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

45
.1

54
.1

4.
25

3]
 o

n 
17

 S
ep

te
m

be
r 

20
24

, a
t 1

5:
27

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



In order to effectively leverage real-time incremental data and achieve efficient forecasting, the proposed fore-
casting mechanism encompasses two key processes: online imputation and online forecasting. In particular, 
online imputation reconstructs missing values in the incremental data, whereas online forecasting utilizes Han-
kel matrix factorization to estimate future traffic states. Notably, the approach is efficient and effective because of 
using the Hankel matrix in the lower dimensional latent spaces. The Hankel matrix can implicitly preserve the 
temporal correlations for traffic states and provide insight into estimating future traffic states automatically. 
Extensive numerical experiments were conducted using the real-world Uber movement speed data set from Seat-
tle, Washington, to validate the proposed methodology. The results demonstrate the superior forecasting perfor-
mance of the HTMF model compared with multiple baseline models. These findings provide compelling 
evidence for the advantages of HTMF in effectively addressing challenges associated with sparsity, high- 
dimensionality, and short time series in urban traffic state forecasting. Our proposed HTMF model also holds 
potential for other prediction tasks as long as the real-world time series forecasting exhibits two key characteris-
tics: sparse time series with global/local trends and low-dimensional patterns. These characteristics indicate that 
the high-dimensional time series can be effectively compressed or represented using limited low-dimensional 
factors and simultaneously take the expression of matrix factorization on the sparse data.

In this work, we empirically analyzed the convergence pattern of HTMF. Although the convergence behavior 
of an algorithm is often affected by several factors, such as the assumptions made in the model and the methods 
for initialization (Chi et al. 2019), it is still crucial to analyze the convergence behavior of the algorithm with theo-
retical guarantees. Thus, a potential direction for advancing this study is to investigate whether theoretical per-
formance guarantees can be derived under certain assumptions and specific initialization schemes.
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