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Abstract

Spatiotemporal traffic data, which represent multidimensional time series on considering different spatial
locations, are ubiquitous in real-world transportation systems. However, the inevitable missing data problem
makes data-driven intelligent transportation systems suffer from the incorrect response. Therefore, imputing
missing values is of great importance but challenging as it is not easy to capture spatiotemporal traffic patterns,
including explicit and latent features. In this study, we propose an augmented tensor factorization model by
incorporating generic forms of domain knowledge from transportation systems. Specifically, we present a fully
Bayesian framework for automatically learning parameters of this model using variational Bayes (VB). Relying on
the publicly available urban traffic speed data set collected in Guangzhou, China, experiments on two types of
missing data scenarios (i.e., random and non-random) demonstrate that the proposed Bayesian augmented tensor
factorization (BATF) model achieves best imputation accuracies and outperforms the state-of-the-art baselines
(e.g., Bayesian tensor factorization models). Besides, we discover interpretable patterns from the experimentally
learned global parameter, biases, and latent factors that indeed conform to the dynamic of traffic states.

Keywords: Spatiotemporal traffic data, Missing data imputation, Pattern discovery, Bayesian tensor
factorization, Variational Bayes

1. Introduction1

Missing data problem is common and inevitable in the data-driven intelligent transportation systems, which2

also exists in several applications (e.g., traffic states monitoring). Although we have many advanced sensors to3

enable us to collect all of the data as we want, unfortunately, it may be still impossible to avoid data incompleteness4

because some types of data are sparse by nature. Other types of urban traffic data may be restricted by the5

spatial coverage of sensors. The uncertainty like communication malfunctions and transmission distortions of6

sensors when collecting spatiotemporal data is another influential factor. Thus, in these contexts, making accurate7

imputation and improving data quality are critical for supporting the success of any application which makes use8

of that type of data.9

The main idea of missing traffic data imputation can be generally summarized as follows. If we have partially10

observed data with both spatial and temporal resolution, then a model is required to be capable of discovering11

spatiotemporal patterns. From a technical perspective, this is similar to the idea of collaborative filtering12

(Salakhutdinov and Mnih, 2008; Xiong et al., 2010). For example, given a spatiotemporal traffic states matrix13

(road segment × time series), in order to impute missing values for each single time series (corresponding to each14

road segment), we can borrow collaborative information from similar road segments (Laa et al., 2018).15

To this end, there is a family of matrix factorization techniques, which has been applied to impute missing16

traffic data in the previous studies (Qu et al., 2008, 2009; Li et al., 2013). Qu et al. (2009) proposed a probabilistic17

principal component analysis (PPCA) based imputation method for traffic volume data completion, and in their18

experiments, this method was illustrated to make use of patterns including not only statistical information of19

traffic flow, but periodicity and local predictability. Within this work, BPCA evaluated by Qu et al. (2008)20

was proven to be inferior to PPCA. Following this work, Li et al. (2013) demonstrated that using spatial and21

temporal dependencies could help reduce estimation errors significantly for PPCA based methods. Notably, in22

these methods, the assumption of strictly daily similarity is not required.23

Recently, Rodrigues et al. (2018) applied the multi-output Gaussian processes (GPs) to model the complex24

spatial and temporal patterns about incomplete traffic speed data. Since the model is capable of considering25

observation uncertainty and spatial dependencies between nearby road segments, their experiments showed26
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Figure 1: Graphical illustration of the tensor completion task for partially observed traffic measurements.

that the model achieves significantly better results than some state-of-the-art imputation methods including27

independent GP, PPCA, and Bi-LSTM.28

Another choice for modeling spatiotemporal traffic data is through organizing these data into tensors. In the29

existing studies, tensor completion models for imputing missing traffic data can be summarized into two categories.30

The first is low-rank tensor completion models which include SiLRTC, FaLRTC, and HaLRTC proposed by Liu31

et al. (2013), then, the experiments about traffic volume data imputation have indicated that HaLRTC supports32

the use of spatial information from neighboring locations (Ran et al., 2016). However, these models are sensitive33

to the observation noises and suffer from the sparsity issue. When dealing with an extremely sparse tensor, they34

are inferior to capture the global information of the tensor (Zhao et al., 2015a), thus, the imputation accuracy of35

these models is rather limited.36

The second is tensor decomposition for an incomplete tensor, Tan et al. (2013a,b); Asif et al. (2016) employed37

multilinear tensor decomposition as to estimate missing traffic data, and the extensive experiments demonstrated38

that the tensor decomposition models outperform the PCA based methods. Performing fully Bayesian treatment39

on tensor decomposition makes it possible to tackle the non-convex optimization problem underlying tensor40

decomposition (Xiong et al., 2010; Rai et al., 2014; Zhao et al., 2015a,b) and alleviate the data sparsity issue.41

This paper provides a generic solution to multidimensional traffic data modeling using tensor factorization42

models. Specifically, inspired by Koren et al. (2009); Chen et al. (2018), one aim of this work is to develop an43

augmented tensor factorization that combines both explicit patterns and latent factors. In a variational Bayes44

(VB) framework, the model parameters formulated in the augmented tensor factorization are expected to learn by45

inferring their variational posteriors. In terms of Bayesian tensor factorization, Hu et al. (2015); Rai et al. (2015)46

also reported that deterministic inference methods such as VB and Expectation Maximization (EM) are more47

efficient than the close-formed Markov chain Monte Carlo (MCMC).48

In this new approach to missing data imputation, we wish to further investigate the semantic interpretability of49

the augmented tensor factorization, in which we incorporate generic forms of domain knowledge from transportation50

systems. On considering the missing data scenario and by comparing to the Bayesian tensor factorization models,51

we finally intend to explore the advantages of newly formulated augmented tensor factorization with fully Bayesian52

treatment.53

2. Preliminaries54

A natural way of modeling multidimensional traffic data is in the form of a tensor. In this work, our task is:55

given a partially observed tensor Y, relying on its algebraic structure, learn from partial elements and further56

estimate the unobserved elements in this tensor (see Fig. 1). Formally, we use YΩ to denote the partially observed57

elements in Y, and where Ω is the set of observation index. For simplicity of notation, we only investigate the58

tensor factorization for third-order tensor Y ∈ Rm×n×f in this study. And we further define O ∈ Rm×n×f to be a59

binary tensor with such that oijt = 1 if yijt is observed (i.e., (i, j, t) ∈ Ω), and oijt = 0 otherwise.60

Regarding such formulated tensor completion task, we summarize the main developed tensor models as follows:61

(a) Basic tensor factorization. To identify an underlying low-dimensional representation of r latent factors,62

one well-established model is CANDECOMP/PARAFAC(CP) decomposition and we can factorize Y into factor63

matrices U ∈ Rm×r, V ∈ Rn×r and X ∈ Rf×r (Kolda and Bader, 2009). For any (i, j, t)-th element of the tensor64

Y , there exists an approximation which is a multilinear combination of r latent factors from each factor matrix as65

yijt ≈
r∑

k=1

uikvjkxtk,∀(i, j, t). (1)

(b) Low-rank tensor completion. By introducing trace norm to fill in tensors’ missing elements, Liu et al. (2013)66

developed a sequence of low-rank tensor completion algorithms by converting the nonconvex rank minimization67
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problem to a convex optimization (i.e., trace norm optimization) problem. In their definition, the optimization68

formula is69

min
X

:

3∑

i=1

αi‖X(i)‖∗

s.t. : XΩ = YΩ,

(2)

where αis are constants satisfying αi ≥ 0 and
∑3
i=1 αi = 1. In the objective function, X(i) denotes the matrix70

unfolded along i-th mode, and ‖X(i)‖∗ represents the trace norm of X(i).71

(c) Bayesian tensor factorization. The goal of tensor factorization is to find a low-rank approximation, thus,72

taking CP factorization as an example, we can in effect minimize the loss function to achieve a tensor factorization73

by74

J =
∑

(i,j,t)∈Ω

(yijt −
r∑

k=1

uikvjkxtk)2 + wuRu + wvRv + wxRx, (3)

where Ru,Rv,Rx are regularization terms related to the factor matrices U, V,X respectively, and their weights75

are {wu, wv, wx}. Unfortunately, one common thing associated with this optimization is the non-convex problem,76

thus leading to the development of Bayesian Gaussian tensor factorization approaches (Xiong et al., 2010; Rai77

et al., 2014; Hu et al., 2015; Rai et al., 2015; Zhao et al., 2015a,b).78

In terms of experimental evaluation, spatiotemporal traffic data sets collected from transportation systems79

can be easily represented by a multidimensional array (i.e., tensor). Fig. 1 illustrates the framework for imputing80

the missing values of spatiotemporal traffic data.81

3. Bayesian augmented tensor factorization model82

In the following, we first introduce the mathematical formula of the proposed augmented tensor factorization.83

Subsequently, we briefly discuss the Bayesian treatment for solving this factorization model. Finally, we infer84

the variational posterior of parameters and hyperparameters in the Bayesian graphical network and derive an85

implementation for the augmented tensor factorization using VB.86

3.1. Augmented tensor factorization87

Typically, CP decomposition maps multidimensional data to a joint latent factor space of dimensionality88

r, such that complicated interactions are modeled as inner products in that space (see Eq. (1)). In this work,89

we build a semantic combination of explicit patterns and latent factors on the tensor model and propose an90

augmented tensor factorization with the following formula, i.e.,91

yijt ≈ µ+ φi + θj + ηt +

r∑

k=1

uikvjkxtk,∀(i, j, t), (4)

where µ ∈ R is a global parameter responsible for all tensor elements, φ ∈ Rm,θ ∈ Rn,η ∈ Rf are bias vectors92

relative to each dimension, and U ∈ Rm×r, V ∈ Rn×r, X ∈ Rf×r are factor matrices controlling the interactions93

among different dimensions. In this model, global parameter µ and bias vectors {φ,θ,η} indicate the explicit94

patterns, while factor matrices {U, V,X} indicate the latent factors. Fig. 2 presents a concise graph of the95

proposed tensor model.96

In the proposed model, parameter µ serves as a global parameter for approaching the overall average of tensor97

elements. Based on µ, bias along each dimension captures the explicit patterns or features (Koren et al., 2009).98

In the transportation field, it is also valuable to model the bias of spatial and temporal attributes (Chen et al.,99

2018). Now, for example, consider the case that the average time series speed of collected road segments is 39100

km/h. Further, suppose that one selected road segment tends to be 10 km/h higher than the average, and the101

specific time period tends to be 5 km/h lower than the average. Then, the speed value for the selected road102

segment at that time period would be roughly approximated by 44 km/h (i.e., 39 + 10− 5 = 44).103

3.2. Bayesian framework104

We propose to use Bayesian inference methods to learn the parameters {µ,φ,θ,η, U, V,X} from the data105

tensor Y. Since Gaussian assumption over tensor factorization has an equivalent form to the commonly used106

loss function (Xiong et al., 2010), therefore, we assume that each element of Y follows independent Gaussian107

distribution, i.e.,108

yijt ∼ N (µ+ φi + θj + ηt +

r∑

k=1

uikvjkxtk, τ
−1),∀(i, j, t), (5)
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Figure 2: Proposed augmented tensor factorization to tensor completion.

where the notation N (·) denotes Gaussian distribution, and τ is the precision (inverse of the variance) which is a109

universal parameter for all tensor elements. From a probability perspective, Eq. (5) is capable of modeling the110

data uncertainty and randomness of Y.111

The basic idea of Bayesian inference is to derive the posterior distribution as a consequence of prior distribution112

and likelihood function in a Bayesian setting. To learn the model parameters in Eq. (5), we need to place conjugate113

priors on model parameters, i.e.,114

µ, φi, θj , ηt ∼ N (µ0, τ
−1
0 ),∀(i, j, t),

ui ∼ N (µu,Λ
−1
u ),∀i,

vj ∼ N (µv,Λ
−1
v ),∀j,

xt ∼ N (µx,Λ
−1
x ),∀t,

τ ∼ Gamma(a0, b0),

(6)

where the vector ui ∈ Rr is the i-th row of factor matrix U ∈ Rm×r with dimensionality r, the vector vj ∈ Rr is115

the j-th row of factor matrix V ∈ Rn×r, and the vector xt ∈ Rr is the t-th row of factor matrix X ∈ Rf×r. The116

probability density function (PDF) of the Gamma distribution (i.e., Gamma(·)) with shape a and rate b is117

Gamma(τ | a, b) =
1

Γ(a)
baτa−1 exp (−bτ), (7)

where the notation Γ(·) denotes Gamma function.118

Referring to the Bayesian probabilistic matrix factorization proposed by Salakhutdinov and Mnih (2008), we119

further place Gaussian-Wishart priors on hyperparameters {µu,Λu,µv,Λv,µx,Λx} as follows120

µu,Λu ∼ N (µu | µ0, (β0Λu)−1)×W(Λu |W0, ν0),

µv,Λv ∼ N (µv | µ0, (β0Λv)
−1)×W(Λv |W0, ν0),

µx,Λx ∼ N (µx | µ0, (β0Λx)−1)×W(Λx |W0, ν0),

(8)

where the marginal distribution over {Λu,Λv,Λx} is a Wishart distribution (i.e., W(·)), and the conditional121

distribution over {µu,µv,µx} given {Λu,Λv,Λx} is a multivariate Gaussian distribution. Specifically, the PDF of122

Wishart distribution is given by123

W(Λ |W, ν) =
1

C
|Λ| 12 (ν−r−1) exp (−1

2
tr(W−1Λ)), (9)

where C is a normalization constant, and the notation tr(·) denotes the trace of a squared matrix. Λ follows124

Wishart distribution with ν degrees of freedom and a r × r scale matrix W .125

For graphical model of the proposed Bayesian augmented tensor factorization (BATF), see Fig. 3. In the126

following, we use Θ to represent {µ,φ,θ,η, U, V,X, τ,µu,Λu,µv,Λv,µx,Λx} for reducing the verbosity. In terms127

of Eq. (4), the aim is to derive the model parameters {µ,φ,θ,η, U, V,X}.128

3.3. Posterior inference using VB129

Bayesian tensor factorization models have attracted much interest in collaborative filtering (Xiong et al., 2010),130

image completion (Zhao et al., 2015a,b), and relational graph analysis (Schein et al., 2016) (e.g., social network131

and international relation). In this part, we describe the VB inference for the proposed BATF.132

3.3.1. Fundamentals of VB133

VB is a deterministic inference method for approximating posterior distributions. In this study, we wish to seek134

a distribution q(Θ) to approximate the true posterior distribution p(Θ | YΩ) by minimizing the Kullback-Leibler135

(KL) divergence. The KL divergence is defined as follows136
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KL(q(Θ) ‖ p(Θ | YΩ)) =

∫
q(Θ) ln

q(Θ)

p(Θ | YΩ)
dΘ

= ln p(YΩ)−
∫
q(Θ) ln

p(YΩ,Θ)

q(Θ)
dΘ,

(10)

where ln p(YΩ) represents the model evidence which is a constant, and its lower bound is defined as137

L(q) =

∫
q(Θ) ln

p(YΩ,Θ)

q(Θ)
dΘ.

According to the mean-field approximation, the variational posterior distribution q(Θ) is fully factorized by138

q(Θ) =q(µ)×
m∏

i=1

q(φi)q(ui)×
n∏

j=1

q(θj)q(vj)×
f∏

t=1

q(ηt)q(xt)

× q(τ)× q(µu,Λu)× q(µv,Λv)× q(µx,Λx).

(11)

For any s-th variable Θs, the equivalent form for maximizing the lower bound L(q) is given as follows139

ln q(Θs) = Eq(Θ\Θs) [ln p(YΩ,Θ)] + const, (12)

where the notation Eq(Θ\Θs) [·] denotes an expectation with respect to the distributions q(Θ\Θs) over all variables140

except Θs. Putting Eqs. (5), (6) and (8) together, the joint distribution p(YΩ,Θ) mentioned in Eq. (12) is141

p(YΩ,Θ) =p(YΩ | µ,φ,θ,η, U, V,X, τ)× p(µ)×
m∏

i=1

p(φi)p(ui | µu,Λu)

×
n∏

j=1

p(θj)p(vj | µv,Λv)×
f∏

t=1

p(ηt)p(xt | µx,Λx)× p(τ)

× p(µu,Λu)× p(µv,Λv)× p(µx,Λx).

(13)

3.3.2. The variational posterior distribution of µ142

Starting with variational posterior distribution q(µ) with respect to the model parameter µ and applying143

Eqs. (12) and (13), we get the logarithm form of q(µ) as144

ln q(µ) = Eq(Θ\µ)[ln p(YΩ,Θ)] + const

= −
∑

(i,j,t)∈Ω

1

2
E[τ(zijt − µ)2]− 1

2
τ0E[(µ− µ0)2] + const

= −1

2
(E [τ ]

∑

(i,j,t)∈Ω

oijt + τ0)µ2 + (E [τ ]
∑

(i,j,t)∈Ω

E [zijt] + τ0µ0)µ+ const,

(14)

where the notation Eq(Θ\µ) [·] denotes an expectation with respect to the distributions q(Θ\µ) over all variables145

except µ. Equivalently, the variational posterior introduced in Eq. (14) is q(µ) = N (µ̃, τ̃−1) with such that146
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µ̃ = τ̃−1(E [τ ]
∑

(i,j,t)∈Ω

E [zijt] + τ0µ0), τ̃ = E [τ ]
∑

(i,j,t)∈Ω

oijt + τ0, (15)

where zijt = yijt − φi − θj − ηt −
∑r
k=1 uikvjkxtk and its variational expectation is given by147

E [zijt] = yijt − E [φi]− E [θj ]− E [ηt]−
r∑

k=1

E [uik]E [vjk]E [xtk] . (16)

3.3.3. The variational posterior distribution of {φ,θ,η}148

As can be seen from the Bayesian graphical model in Fig. 3 and the prior setting in Eq. (8), bias vectors149

φ,θ,η are expressed by their independent Gaussian elements. Considering the i-th element φi of φ ∈ Rm as an150

example, we have151

ln q(φi) = Eq(Θ\φi)[ln p(YΩ,Θ)] + const

= −1

2
(E [τ ]

∑

j,t:(i,j,t)∈Ω

oijt + τ0)φ2
i + (E [τ ]

∑

j,t:(i,j,t)∈Ω

E [fijt] + τ0µ0)φi + const, (17)

where
∑
j,t:(i,j,t)∈Ω denotes the sum over j ∈ {1, 2, ..., n} and t ∈ {1, 2, ..., f} with specific i in the index set Ω.152

We therefore derive the variational posterior q(φi) = N (µ̃φ, τ̃
−1
φ ) with such updates153

µ̃φ = τ̃−1
φ (E [τ ]

∑

j,t:(i,j,t)∈Ω

E [fijt] + τ0µ0), τ̃φ = E [τ ]
∑

j,t:(i,j,t)∈Ω

oijt + τ0, (18)

where154

E [fijt] = yijt − E [µ]− E [θj ]− E [ηt]−
r∑

k=1

E [uik]E [vjk]E [xtk] . (19)

Once we have the variational posterior distribution q(φi), we can also derive the variational posterior155

distributions q(θj) and q(ηt) in a similar manner respectively.156

3.3.4. The variational posterior distribution of {U, V,X}157

Since factor matrices have multivariate Gaussian prior over their row vectors, thus, for instance, we can write158

the variational posterior distribution q(ui) for updating the factor matrix U as follows159

ln q(ui) =Eq(Θ\ui)[ln p(YΩ,Θ)] + const

=− 1

2

∑

j,t:(i,j,t)∈Ω

E[τ
(
wijt − uTi (vj ~ xt)

)2
]− 1

2
E[(ui − µu)

T
Λu (ui − µu)] + const

=− 1

2
uTi (E [τ ]

∑

j,t:(i,j,t)∈Ω

E
[
(vj ~ xt)(vj ~ xt)

T
]

+ E [Λu])ui

+
1

2
uTi (E [τ ]

∑

j,t:(i,j,t)∈Ω

E [vj ~ xt]E [wijt] + E [Λu]E [µu]) + const,

(20)

where the symbol ~ represents Hadamard product, and uTi (vj ~ xt) =
∑r
k=1 uikvjkxtk. For brevity, E[wijt] =160

yijt − E[φi]− E[θj ]− E[ηt]. We have the variational posterior q(ui) = N (µ̃u, Λ̃
−1
u ) whose parameters are given by161

µ̃u = Λ̃−1
u (E [τ ]

∑

j,t:(i,j,t)∈Ω

E [vj ~ xt]E [wijt] + E [Λu]E [µu]),

Λ̃u = E [τ ]
∑

j,t:(i,j,t)∈Ω

E
[
(vj ~ xt)(vj ~ xt)

T
]

+ E [Λu] ,
(21)

where assuming that the vectors {vj ,xt} ,∀j, t are independent (Zhao et al., 2015a), then162

E
[
(vj ~ xt)(vj ~ xt)

T
]

= E
[
vjv

T
j

]
~ E

[
xtx

T
t

]

= (E [vj ]E
[
vTj
]

+ cov(vj)) ~ (E [xt]E
[
xTt
]

+ cov(xt)),
(22)

here, the notation cov(·) denotes the covariance matrix of a vector.163

In order to update the factor matrices V and X, we can do the same with vectors vj , j ∈ {1, 2, ..., n} and164

xt, t ∈ {1, 2, ..., f} while referring to ui, i ∈ {1, 2, ...,m}.165
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3.3.5. The variational posterior distribution of {(µu,Λu) , (µv,Λv) , (µx,Λx)}166

According to Eq. (12), by taking derivative of Eq. (13) with respect to (µu,Λu), the variational posterior167

q(µu,Λu) can be analytically derived as168

ln q(µu,Λu) =Eq(Θ\µu,Λu)[ln p(YΩ,Θ)] + const

=
1

2
ln |Λu| −

1

2
(µu −

mū+ β0µ0

m+ β0
)T [(m+ β0) Λu] (µu −

mū+ β0µ0

m+ β0
)

+
1

2
(m+ ν0 − r − 1) ln |Λu|

− 1

2
tr((W−1

0 +

m∑

i=1

(E [ui]− ū) (E [ui]− ū)
T

+
mβ0

m+ β0
(ū− µ0) (ū− µ0)

T
)Λu) + const,

(23)

recall that there is a Gaussian-Wishart prior placing on the hyperparameters (µu,Λu) as described in Eq. (8), we169

therefore have the variational posterior q(µu,Λu) = N (µu | µ̃∗u, (β̃∗uΛu)−1)W(Λu | W̃ ∗u , ν̃∗u) as follows170

µ̃∗u =
mū+ β0µ0

m+ β0
, β̃∗u = β0 +m, ν̃∗u = ν0 +m,

(W̃ ∗u )−1 = W−1
0 +

m∑

i=1

(E [ui]− ū) (E [ui]− ū)
T

+
mβ0

m+ β0
(ū− µ0) (ū− µ0)

T
,

(24)

where ū = 1
m

∑m
i=1 E [ui].171

In such case, the Eqs. (23) and (24) can help us to derive the variational posterior of (µv,Λv) and (µx,Λx).172

3.3.6. The variational posterior distribution of τ173

Consider the precision term τ ∈ R which controls all tensor elements, we write its variational posterior referring174

to the above derivations as175

ln q(τ) =Eq(Θ\τ)[ln p(YΩ,Θ)] + const

=(a0 +
1

2

∑

(i,j,t)∈Ω

oijk − 1) ln τ − (b0 +
1

2

∑

(i,j,t)∈Ω

E
[
(yijt − gijt)2

]
)τ + const, (25)

and it is straightforward to have the variational posterior q(τ) = Gamma(ãτ , b̃τ ) as follows176

ãτ = a0 +
1

2

∑

(i,j,t)∈Ω

oijk,

b̃τ = b0 +
1

2

∑

(i,j,t)∈Ω

E
[
(yijt − gijt)2

]
,

(26)

where we define gijt = µ+ φi + θj + ηt +
∑r
k=1 uikvjkxtk.177

3.3.7. Lower bound of model evidence178

The lower bound plays an essential role in the VB derivations. If in some cases we want to maximize the179

marginal probability, we can instead maximize its lower bound. As a result, when using VB to implement a tensor180

factorization model, we can check the value of lower bound to determine the convergence of the algorithm because181

L(q) at each epoch should increase sequentially. To be specific, the lower bound regarding Eq. (10) is given by182

L(q) =Eq(Θ) [ln p(YΩ,Θ)] +H(q(Θ))

=Eq [ln p(YΩ | Θ)] + Eq [ln p(µ)] + Eq [ln p(φ)] + Eq [ln p(θ)] + Eq [ln p(η)]

+ Eq [ln p(U | µu,Λu)] + Eq [ln p(V | µv,Λv)] + Eq [ln p(X | µx,Λx)]

+ Eq [ln p(µu,Λu)] + Eq [ln p(µv,Λv)] + Eq [ln p(µx,Λx)] + Eq [ln p(τ)]

− Eq [ln q(µ)]− Eq [ln q(φ)]− Eq [ln q(θ)]− Eq [ln q(η)]

− Eq [ln q(U)]− Eq [ln q(V )]− Eq [ln q(X)]

− Eq [ln q(µu,Λu)]− Eq [ln q(µv,Λv)]− Eq [ln q(µx,Λx)]− Eq [ln q(τ)] ,

(27)

where all expectations are with respect to the posterior distribution q. The first term is an expectation of the183

joint distribution. The second to the eighth terms are the expectations of log-priors over the global parameter,184

bias vectors, and factor matrices. The ninth to the eleventh terms denote the expectations of log-priors over185

hyperparameters. The twelfth term is the expectation of log-prior over τ . In addition, the last 11 terms are186

entropy of the posterior distribution q over Θ.187
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3.4. Implementing BATF188

In above, since our posterior inference based tensor factorization is inferred in a VB framework, the question189

is how to learn our interested parameters {µ,φ,θ,η, U, V,X} (i.e., global parameter, bias vectors, and factor190

matrices) from the partially observed tensor YΩ. The feasible solution is by updating the model parameters and191

hyperparameters (see Fig. 3) alternatively. We can trace back to the above derivations and see more details about192

it from Algorithm 1.193

Algorithm 1 Bayesian augmented tensor factorization (BATF)

Input: incomplete data tensor YΩ ∈ Rm×n×f , indicator tensor O ∈ Rm×n×f , global parameter µ, bias vectors
{φ,θ,η}, and factor matrices {U, V,X}.

Output: estimated tensor Ŷ ∈ Rm×n×f , and updated µ, {φ,θ,η} and {U, V,X}.
Initialize τ, a0, b0, β0 = 1, µ0 = 0, τ0 = 1, ν0 = r, µ0 = 0, and W0 = I (identity matrix).

1: repeat
2: Update the posterior of global parameter q(µ) using Eq. (15).
3: Update the posterior of hyperparameters q(µu,Λu), q(µv,Λv) and q(µx,Λx) using Eq. (24) and its similar

inference results.
4: for i = 1 to m do
5: Update the posterior of bias q(φi) using Eq. (18).
6: Update the posterior of factor q(ui) using Eq. (21).
7: end for
8: for j = 1 to n do
9: Update the posterior of bias q(θj) similar to Eq. (18).

10: Update the posterior of factor q(vj) similar to Eq. (21).
11: end for
12: for t = 1 to f do
13: Update the posterior of bias q(ηt) similar to Eq. (18).
14: Update the posterior of factor q(xt) similar to Eq. (21).
15: end for
16: Update the posterior of precision q(τ) using Eq. (26).
17: Evaluate the lower bound L(q) using Eq. (27).
18: until convergence.

4. Experiments194

In this section, our goal is to learn an expressive representation of urban traffic state that is semantically195

meaningful, so that we can identify both explicit patterns and latent factors. To this end, we carry out a wide range196

of empirical examinations to broadly investigate the performance of BATF. Relying on the urban traffic speed197

data set, we first evaluate how well BATF works for tensor completion compared to the baseline models. We then198

survey the learned latent factors as well as the explicit patterns, and further show the semantic interpretations of199

each one and their combination. Finally, we demonstrate the robustness of BATF in the missing data imputation200

task under different missing scenarios with varying missing rates.201

4.1. Details of experiment setting202

Data set. We utilize a publicly available traffic speed data set (see https://doi.org/10.5281/zenodo.1205229)203

which is evaluated in the recent papers (Chen et al., 2018, 2019). This data set is collected from 214 road segments204

in Guangzhou, China within two months (i.e., 61 days from August 1, 2016 to September 30, 2016) at 10-minute205

interval (144 time intervals per day). The speed data can be organized as a third-order tensor (road segment ×206

day × time interval, with a size of 214× 61× 144). There are about 1.29% missing values in the raw data set.207

Experiment setup. The main task of this work is missing data imputation, therefore, we first follow two208

missing data scenarios, including random missing and non-random (fiber) missing. Then, we set our tensor209

completion task with 10%, 30%, and 50% missing rates under both two scenarios. When training BATF model,210

we use rank r = 80 in the case of random missing. In order to prevent overfitting, we consider rank r = 20, 15, 10211

for BATF model at 10%, 30%, and 50% non-random missing rates, respectively. The maximum epoch for BATF212

model is set to 200. The Matlab code for implementing BATF is available at https://github.com/sysuits/BATF.213

Performance metrics. The mean absolute percentage error (MAPE) and root mean square error (RMSE)214

are used to evaluate the model performance, i.e.,215

MAPE =
1

N

N∑

i=1

|yi − ŷi|
yi

, RMSE =

√√√√ 1

N

N∑

i=1

(yi − ŷi)2
, (28)
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where N is the total number of missing values, and yi and ŷi are the actual value of a missing element and its216

imputation, respectively.217

Baselines. We consider two fully Bayesian tensor factorization models, the Bayesian CP factorization (BCPF,218

Zhao et al. (2015a)) and the Bayesian Gaussian CP decomposition (BGCP, Chen et al. (2019)), as evaluation219

baselines. BCPF and BGCP are implemented by VB and MCMC, respectively.220

4.2. Performance of missing data imputation221

With the above settings, we compare the proposed BATF model to three state-of-the-art models, including222

BCPF (Zhao et al., 2015b), BGCP (Chen et al., 2019), and STD (Chen et al., 2018). Table 1 shows the imputation223

performance of these models where BATF, BCPF, and BGCP share the same rank r. Note that the comparison224

between BGCP and other models (e.g., daily average, kNN, and HaLRTC) was demonstrated at the work of Chen225

et al. (2019). In this study, we only investigate the imputation performance of tensor based models.226

Our first experiment examines the performance of different models under the random missing scenario. One227

can easily find that the Bayesian tensor factorization models have significant improvement over STD and are228

less sensitive to the increasing missing rate. Thus, it also supports that Bayesian inference methods for tensor229

factorization are effective for dealing with the sparsity issue (Zhao et al., 2015a). Thanks to the flexible conjugate230

prior setting, BATF and BGCP get slightly better results than BCPF as they have more parameters to fit the231

data. However, when the tensor behaves with an increasing amount of missing values, these models accordingly232

exhibit growing errors.233

In the second experiment, we present imputation performance under the non-random missing scenario, which234

is a more realistic temporally correlated scenario following Chen et al. (2018). Since Bayesian tensor factorization235

models are sensitive to the rank parameter, we choose the rank r as 20, 15, and 10 for the missing rate of 10%, 30%,236

and 50%, respectively. From the comparison, we see that our BATF performs better than the other two models,237

which shows the structural benefit of augmented tensor factorization. The results of Table 1 also suggest that238

the presentation learned by BATF is significantly more capable of imputing missing data than other competing239

models, and BATF’s results are also less sensitive to the increasing missing rate.240

Due to the temporally correlated corruption in the non-random missing scenario, it becomes difficult to utilize241

the algebraic structure and collaborative information. Comparing to the random missing scenario, we can find242

that the errors at the non-random missing scenario are relatively higher. Even with the same missing rate, the243

non-random missing scenario is more difficult to tackle than the random missing. In practice, we can see that244

BCPF fails to work in the non-random missing scenario with the given ranks (see Table 1).245

Table 1: MAPE/RMSE scores of tensor completion models for the urban traffic speed data set.

Random missing Non-random missing

10% (r = 80) 30% (r = 80) 50% (r = 80) 10% (r = 20) 30% (r = 15) 50% (r = 10)

BATF 0.0825/3.5745 0.0834/3.5969 0.0841/3.6290 0.0976/4.1252 0.0995/4.2256 0.1029/4.3557
BCPF 0.0832/3.5988 0.0843/3.6340 0.0852/3.6784 - - -
BGCP 0.0823/3.5614 0.0827/3.5775 0.0833/3.6009 0.0980/4.1413 0.0999/4.2425 0.1048/4.4419
STD 0.0888/3.7708 0.0936/3.9286 0.0993/4.1253 0.1019/4.1881 0.1068/4.4029 0.1133/4.6291

4.3. Semantic interpretations of BATF246

In this study, we are interested in BATF having not only the imputation power but also the ability to discover247

interpretable patterns. To provide more insights into the effectiveness of BATF, we start by summarizing the248

explicit patterns of BATF (see Fig. 4) and explore the semantic interpretations of BATF. Fig. 4(a) presents the249

curves of global parameters of BATF by running 30 times. It is intuitive that the average of 30 global parameter250

curves is extremely close to the actual mean of observations (i.e., 39.01 km/h). This experimentally illustrates that251

the global parameter controlling all tensor elements is used to capture the mean standard of partially observed252

data.253

Fig. 4(b) and Fig. 4(c) show the bias values corresponding to 214 road segments and 144 time intervals254

respectively. From Fig. 4(b), there are about half of road segments obtaining biases above 0 and up to 20 km/h,255

while others between -15 km/h and 0 km/h. The bias value also has its real-world meanings. For example, if one256

road segment has a relatively high (positive) bias, we can generally say that the traffic state of this road segment257

is better than the normal standard of the whole network. The bias of one road segment is indeed a relative value258

over the global average.259

Fig. 4(c) illustrates that negative biases appear in daytime, while positive biases appear in night. Specifically,260

the bias reaches its lowest during the evening peak hours, and the bias is relatively higher in the morning peak261

hours. Fig. 4(d) shows the heatmap of summed biases over day and time interval dimensions. It enables us to262
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Figure 4: The explicit patterns (i.e., global parameter and biases) of BATF at the 50% non-random missing rate with r = 10.
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understand the time-evolving traffic patterns across two dimension simultaneously. Note that all these findings263

are also consistent with the daily trend of traffic state reported by Chen et al. (2018).264

To reinforce our interpretation that these explicit patterns are semantically meaningful, in Fig. 5, we present265

an example which covers the time series of actual values versus the one of its imputation of road segment #1.266

The simple combination of explicit patterns (i.e., global parameter and biases) provides rough trends of traffic267

states. By further putting explicit patterns and latent factors together, we can find that the estimated time series268

using BATF is closer to the actual one. Thus, in terms of explicit patterns, our newly formulated Eq. (4) has269

more semantically meaningful representations than the conventional tensor factorization models (see Eq. (1)).270

Regarding the failure of BCPF in the non-random missing scenario (see Table 1), we choose the experiment271

for BCPF at the 30% missing rate with its rank being r = 5, 10. Fig. 6 presents the RMSE and lower bound value272

of BCPF for investigating the train-test performance. In Table 1, it is worth noting that BCPF cannot work273

when setting the same rank r to BATF and BGCP models. However, observing Fig. 6(b), even placing a smaller274

rank, BCPF still suffers from the overfitting problem.275
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Figure 5: The imputation performance of BATF at the 50% non-random missing rate with r = 10, where the estimated result of road
segment #1 is selected as an example. In the both two panels, white rectangles represent fiber missing (i.e., speed observations are
lost in a whole day), and green rectangles indicate partially observed data.
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Figure 6: RMSEs and lower bound values of BCPF model ran 10 times at the 30% missing rate.

5. Conclusion276

In this study, we propose an augmented tensor factorization with fully Bayesian treatment to impute the277

missing traffic data accurately. First, the factorization based on Bayesian inference is less sensitive to the data278

sparsity where the results reported by Bayesian tensor factorization models are in effect more tolerant to the279

increasing missing rate (see Table 1). Then, from the empirical studies, when setting the non-random missing280
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rate ranging from 10% to 50%, we demonstrated that BATF performs best among its competing models. At the281

random missing scenario, BATF also achieves competitive imputation results.282

Finally, as our experiments demonstrated, competing tensor factorization models failed to capture explicit283

patterns and their application scenario is limited because of our complex data and the overfitting issue. Instead,284

the proposed BATF achieves generalization performance of Bayesian tensor factorization and combines explicit285

patterns and latent factors together. Our formula (see Eq. (4)) incorporating generic forms of domain knowledge286

also provide more insights into the effectiveness of tensor factorization.287

Acknowledgement288

The authors would like to thank anonymous referees for their valuable comments. This research is supported289

by the project of National Natural Science Foundation of China (No. U1811463), the Science and Technology290

Planning Project of Guangzhou, China (No. 201804020012), and the Natural Science Foundation of Guangdong291

Province, China (No. 20187616042030004).292

References293

Asif, M. T., Mitrovic, N., Dauwels, J., Jaillet, P., 2016. Matrix and tensor based methods for missing data294

estimation in large traffic networks. IEEE Transactions on Intelligent Transportation Systems 17 (7), 1816–1825.295

Chen, X., He, Z., Sun, L., 2019. A bayesian tensor decomposition approach for spatiotemporal traffic data296

imputation. Transportation Research Part C: Emerging Technologies 98, 73 – 84.297

URL http://www.sciencedirect.com/science/article/pii/S0968090X1830799X298

Chen, X., He, Z., Wang, J., 2018. Spatial-temporal traffic speed patterns discovery and incomplete data recovery299

via svd-combined tensor decomposition. Transportation Research Part C: Emerging Technologies 86, 59–77.300

Hu, C., Rai, P., Chen, C., Harding, M., Carin, L., 2015. Scalable bayesian non-negative tensor factorization for301

massive count data. In: Proceedings, Part II, of the European Conference on Machine Learning and Knowledge302

Discovery in Databases - Volume 9285. ECML PKDD 2015. Springer-Verlag New York, Inc., New York, NY,303

USA, pp. 53–70.304

URL http://dx.doi.org/10.1007/978-3-319-23525-7 4305

Kolda, T. G., Bader, B. W., 2009. Tensor decompositions and applications. SIAM Reviw 51 (3), 455–500.306

Koren, Y., Bell, R., Volinsky, C., Aug 2009. Matrix factorization techniques for recommender systems. Computer307

42 (8), 30–37.308

Laa, I., Olabarrieta, I. I., Vlez, M., Ser, J. D., 2018. On the imputation of missing data for road traffic forecasting:309

New insights and novel techniques. Transportation Research Part C: Emerging Technologies 90, 18 – 33.310

URL http://www.sciencedirect.com/science/article/pii/S0968090X18302535311

Li, L., Li, Y., Li, Z., 2013. Efficient missing data imputing for traffic flow by considering temporal and spatial312

dependence. Transportation research part C: emerging technologies 34, 108–120.313

URL http://dx.doi.org/10.1016/j.trc.2013.05.008314

Liu, J., Musialski, P., Wonka, P., Ye, J., 2013. Tensor completion for estimating missing values in visual data.315

IEEE Transactions on Pattern Analysis and Machine Intelligence 35 (1), 208–220.316

Qu, L., Li, L., Zhang, Y., Hu, J., 2009. Ppca-based missing data imputation for traffic flow volume: A systematical317

approach. IEEE Transactions on Intelligent Transportation Systems 10 (3), 512–522.318

Qu, L., Zhang, Y., Hu, J., Jia, L., Li, L., June 2008. A bpca based missing value imputing method for traffic flow319

volume data. In: 2008 IEEE Intelligent Vehicles Symposium. pp. 985–990.320

Rai, P., Hu, C., Harding, M., Carin, L., 2015. Scalable probabilistic tensor factorization for binary and count321

data. In: Proceedings of the 24th International Conference on Artificial Intelligence. IJCAI’15. AAAI Press, pp.322

3770–3776.323

URL http://dl.acm.org/citation.cfm?id=2832747.2832775324

Rai, P., Wang, Y., Guo, S., Chen, G., Dunson, D., Carin, L., 2014. Scalable bayesian low-rank decomposition325

of incomplete multiway tensors. In: Xing, E. P., Jebara, T. (Eds.), Proceedings of the 31st International326

Conference on Machine Learning. Vol. 32 of Proceedings of Machine Learning Research. PMLR, Bejing, China,327

pp. 1800–1808.328

URL http://proceedings.mlr.press/v32/rai14.html329

12

http://www.sciencedirect.com/science/article/pii/S0968090X1830799X
http://dx.doi.org/10.1007/978-3-319-23525-7_4
http://www.sciencedirect.com/science/article/pii/S0968090X18302535
http://dx.doi.org/10.1016/j.trc.2013.05.008
http://dl.acm.org/citation.cfm?id=2832747.2832775
http://proceedings.mlr.press/v32/rai14.html


Ran, B., Tan, H., Wu, Y., Jin, P. J., 2016. Tensor based missing traffic data completion with spatial-temporal330

correlation. Physica A: Statistical Mechanics and its Applications 446, 54–63.331

Rodrigues, F., Henrickson, K., Pereira, F. C., 2018. Multi-output gaussian processes for crowdsourced traffic data332

imputation. IEEE Transactions on Intelligent Transportation Systems, 1–10.333

Salakhutdinov, R., Mnih, A., 2008. Bayesian probabilistic matrix factorization using markov chain monte carlo.334

In: Proceedings of the 25th International Conference on Machine Learning. ICML ’08. ACM, New York, NY,335

USA, pp. 880–887.336

URL http://doi.acm.org/10.1145/1390156.1390267337

Schein, A., Zhou, M., Blei, D., Wallach, H., 20–22 Jun 2016. Bayesian poisson tucker decomposition for learning338

the structure of international relations. In: Balcan, M. F., Weinberger, K. Q. (Eds.), Proceedings of The 33rd339

International Conference on Machine Learning. Vol. 48 of Proceedings of Machine Learning Research. PMLR,340

New York, New York, USA, pp. 2810–2819.341

URL http://proceedings.mlr.press/v48/schein16.html342

Tan, H., Feng, G., Feng, J., Wang, W., Zhang, Y.-J., Li, F., 2013a. A tensor-based method for missing traffic343

data completion. Transportation Research Part C: Emerging Technologies 28, 15 – 27, euro Transportation:344

selected paper from the EWGT Meeting, Padova, September 2009.345

URL http://www.sciencedirect.com/science/article/pii/S0968090X12001532346

Tan, H., Yang, Z., Feng, G., Wang, W., Ran, B., 2013b. Correlation analysis for tensor-based traffic data347

imputation method. Procedia-Social and Behavioral Sciences 96, 2611–2620.348

Xiong, L., Chen, X., Huang, T.-K., Schneider, J., Carbonell, J. G., 2010. Temporal collaborative filtering with349

bayesian probabilistic tensor factorization. In: Proceedings of the 2010 SIAM International Conference on Data350

Mining. SIAM, pp. 211–222.351

URL http://epubs.siam.org/doi/abs/10.1137/1.9781611972801.19352

Zhao, Q., Zhang, L., Cichocki, A., 2015a. Bayesian cp factorization of incomplete tensors with automatic rank353

determination. IEEE Transactions on Pattern Analysis and Machine Intelligence 37 (9), 1751–1763.354

Zhao, Q., Zhang, L., Cichocki, A., 2015b. Bayesian sparse tucker models for dimension reduction and tensor355

completion. CoRR abs/1505.02343.356

URL http://arxiv.org/abs/1505.02343357

13

http://doi.acm.org/10.1145/1390156.1390267
http://proceedings.mlr.press/v48/schein16.html
http://www.sciencedirect.com/science/article/pii/S0968090X12001532
http://epubs.siam.org/doi/abs/10.1137/1.9781611972801.19
http://arxiv.org/abs/1505.02343

	Introduction
	Preliminaries
	Bayesian augmented tensor factorization model
	Augmented tensor factorization
	Bayesian framework
	Posterior inference using VB
	Fundamentals of VB
	The variational posterior distribution of 
	The variational posterior distribution of {bold0mu mumu ,bold0mu mumu ,bold0mu mumu }
	The variational posterior distribution of {U,V,X}
	The variational posterior distribution of {(bold0mu mumu u,u),(bold0mu mumu v,v),(bold0mu mumu x,x)}
	The variational posterior distribution of 
	Lower bound of model evidence

	Implementing BATF

	Experiments
	Details of experiment setting
	Performance of missing data imputation
	Semantic interpretations of BATF

	Conclusion

