从线性代数到张量计算

Tensor Computations: An Algebraic Perspective

陈新宇 (https://xinychen.github.io)

程展鸿 (https://chengzhanhong.github.io)

赵熙乐 (https://zhaoxile.github.io)

孙立君 (https://lijunsun.github.io)

发布时间: 2022 年 11 月 更新时间: 2023 年 1 月

	1	=
E		求

第一章	代数结构	11
1.1	向量与矩阵	11
	1.1.1 向量	11
	1.1.2 矩阵	12
	1.1.3 矩阵向量化	12
1.2	高阶张量	12
	1.2.1 高阶张量结构	12
	1.2.2 高阶张量矩阵化	14
	1.2.3 高阶张量向量化	14
1.3	特殊代数结构	14
	1.3.1 卷积矩阵	14
	1.3.2 Hankel 矩阵	15
	1.3.3 Toeplitz 矩阵	15
	1.3.4 构造特定矩阵	15
kter	61-184- s) /rm	10
第一草		19
2.1	特征 値 分 解	19
2.2	可开阻ፓ肼 · · · · · · · · · · · · · · · · · · ·	20
	2.2.1 基平正义	20
	2.2.2	21
	2.2.3 随机可并值分解	23
0.0	2.2.4	24
2.3		24
2.4	知阵分胖 · · · · · · · · · · · · · · · · · · ·	24
第三章	Kronecker 积与 Kronecker 分解	25
3.1	Kronecker 积定义	25
	3.1.1 基本定义	25
	3.1.2 Khatri-Rao 积	27
3.2	Kronecker 积基本性质	27
	3.2.1 结合律与分配律	27
	3.2.2 矩阵相乘	28
	3.2.3 求逆矩阵	29
	3.2.4 向量化	30
3.3	Kronecker 积特殊性质	31
	3.3.1 矩阵的迹	31

	3.3.2 矩阵的 Frobenius 范数	32
	3.3.3 矩阵的行列式	33
	3.3.4 矩阵的秩	33
3.4	朴素 Kronecker 分解	34
	3.4.1 定义	34
	3.4.2 引入 permute 概念	34
	3.4.3 求解过程	35
3.5	广义 Kronecker 分解	36
3.6	模型参数压缩问题	37
第四章	外积与 CP 张量分解 4	1
4.1	向量外积	41
	4.1.1 定义	41
	4.1.2 性质	42
4.2	CP 分解	43
	4.2.1 CP 分解形式	43
	4.2.2 交替最小二乘法	43
	4.2.3 处理缺失数据	43
4.3	非负张量分解	43
衛工会	齿太和与 Tuelor 改善公留	15
治五早 5-1	供芯价与 Huckel 从重力解 描本和字 ??	45
5.2	供心你定义 · · · · · · · · · · · · · · · · · · ·	±0 47
0.2	(株心状住)の	±1 17
	5.2.1 派里起评化 · · · · · · · · · · · · · · · · · · ·	±1 ло
5.2	5.2.2 <u>派里问里化</u>	±0 10
0.0 E 4	向阴可开阻ፓ肼····································	±0 10
0.4	Tucker 分解	±0 10
	5.4.1 IUCKET 分解形式	48 40
	5.4.2 父谷取小来法	18 40
	5.4.3 处理缺失数据	18
第六章	低秩线性回归	19
6.1	低秩线性回归	49
6.2	高维向量自回归	49
	6.2.1 一阶向量自回归	49
	6.2.2 高阶向量自回归	49
6.3	时变低秩向量自回归	49
	6.3.1 模型表达式	49
	6.3.2 求解讨程	51
	6.3.3 筧法	53
	6.3.4 案例:时空数据模式挖掘	53
		2
第七章	低秩时序矩阵模型	55
7.1	时序矩阵分解	55
	7.1.1 模型表达式	55
	7.1.2 求解过程	56

	7.1.3 时间序列预测	5'
	7.1.4 延伸内容:基于矩阵分解的图像复原	5'
7.2	离散傅立叶变换与循环卷积	65
	7.2.1 一维卷积定理	65
	7.2.2 二维卷积定理	6
	7.2.3 Parseval 定理	6
7.3	离散傅立叶变换与循环矩阵核范数	6
	7.3.1 循环矩阵定义	6
	7.3.2 循环矩阵核范数	6
	7.3.3 <i>l</i> ₁ 范数最小化问题	6
	7.3.4 循环矩阵核范数最小化问题	6
7.4	低秩拉普拉斯卷积模型	7
	7.4.1 拉普拉斯卷积核	7
	7.4.2 拉普拉斯时序正则	7
	7.4.3 一维低秩拉普拉斯卷积模型	7
	7.4.4 二维低秩拉普拉斯卷积模型	7
7.5	低秩延迟嵌入模型	7
	7.5.1 延迟嵌入矩阵及其性质	7
	7.5.2 低秩延迟嵌入模型	7
7.6	延伸内容:图片行列缺失复原	7
第八章	低秩时序张量模型	8
8.1	平滑张量分解	8
8.2	循环张量核范数	8
8.3	三维低秩拉普拉斯卷积模型	8
第九章	核范数最小化问题	8
9.1	矩阵核范数最小化	8
9.2	张量多重核范数最小化	8
9.3	张量核范数最小化	8
9.4	延伸内容:截断核范数与加权核范数	8
第十章	贝叶斯矩阵分解与张量分解	8
	马尔可夫链蒙特卡洛算法	8
10.1		
$10.1 \\ 10.2$	概率矩阵分解....................................	8
10.1 10.2 10.3	概率矩阵分解	8 8
10.1 10.2 10.3 10.4	概率矩阵分解	8 8 8

插图

1.1	三阶张量 $\mathcal{X} \in \mathbb{R}^{m \times n \times t}$ 及其第 (i, j, k) 个元素 $x_{i,j,k}$	13
1.2	三阶张量 $\mathcal{X} \in \mathbb{R}^{m \times n \times t}$ 自三个维度的纤维	13
1.3	三阶张量 $\mathcal{X} \in \mathbb{R}^{m \times n \times t}$ 自三个维度的切片	13
2.1	基于截断奇异值分解的图像压缩	22
2.2	大熊猫图像的奇异值和累计解释方差(三个红点分别表示 k = 10,50,100 的情	
	况)	22
2.3	奇异值分解和随机奇异值分解效果对比	24
3.1	大熊猫灰度图像	37
3.2	基于广义 Kronecker 分解的灰度图像重构	38
4.1	向量外积得到的三阶张量	41
7.1	Cylinder wake 数据集在时刻 $t = 5, 10, \dots, 40$ 的空间状态	58
7.2	基于时序矩阵分解的流体动态过程预测	58
7.3	大熊猫灰度图像及其随机生成的不完整图像	59
7.4	基于空间平滑与矩阵分解的 90% 缺失率的灰度图像复原	60
7.5	基于空间自回归与矩阵分解的 90% 缺失率的灰度图像复原	62
7.6	循环矩阵示意图	65
7.7	基于循环矩阵核范数最小化算法的 90% 缺失率的灰度图像复原,其中,RSE =	
	13.05%.	70
7.8	基于关系型数据 {x ₁ , x ₂ ,, x ₅ } 的无向循环图	70
7.9	低秩拉普拉斯卷积模型的示意图	72
7.10	某高速公路断面交通流的车速时间序列,其中,蓝色曲线表示车速时间序列;蓝	
	色圆圈表示抽取的部分观测值。	73
7.11	基于一维低秩拉普拉斯卷积模型的 90% 缺失率的车速时间序列重构,其中,红	
	色曲线表示重构出来的车速时间序列。	74
7.12	基于一维低秩拉普拉斯卷积模型的 90% 缺失率的灰度图像复原,其中,RSE =	
	11.23%	74
7.13	基于低秩拉普拉斯卷积模型的 90% 缺失率的灰度图像复原	76

前言

一般意义上认为,张量(tensor)是一种多维数组,相比矩阵这种二维数组,张量拥有更为复杂与灵活的代数结构。在过去的几十年里,张量这种代数结构推动了众多领域的发展,包括信号处理、图像处理、机器学习、数值计算等;张量计算也从以线性代数为支撑的矩阵计算中逐步拓展开来,与当下热门的机器学习领域密不可分,其中,张量计算在机器学习中的经典应用场景包括数据降维、模式识别、数据融合、多维信号重构、时间序列分析、图像复原等。

近些年来,张量计算技术得到了广泛关注,原因在于:第一,现实世界的数据往往本质上 就是张量;第二,诸多数据驱动模型的参数存在张量结构。随着大量张量计算技术涌现出来, 我们不难发现:这些技术大多建立在张量的代数结构及性质基础上,其中不乏一些张量分解 算法。本文以张量计算这一概念为核心,将从线性代数出发,讲述张量计算相关的一系列内 容。为了提高读者的阅读体验,笔者进行了以下尝试:

- 化繁为简。将线性代数以及张量计算的范畴限定在实空间中。另外,严格来说,向量和 矩阵属于低阶张量,为区分概念,我们默认常提到的张量特指高阶张量(阶数大于或等 于 3)。
- 由浅入深。从基本的线性代数内容展开,通过循序渐进的方式引出一系列矩阵分解与张 量分解技术,使读者体会到线性代数的巨大价值。
- 熟能生巧。本文在撰写过程中尽可能考虑初学者的学习历程,在全文中设计一系列难度
 适中的例题让读者更直观地理解一系列理论,并通过练习熟练掌握相应内容。

笔者深感自身才疏学浅,对于线性代数与张量计算的认识具有一定的局限性,请广大读者批评指正。另外,全文内容设置的合理性也有待考究,需要等待读者的检验。尽管如此, 笔者愿竭心力,在后续版本中逐步更新与完善本文,如有建议或疑问,请在 GitHub 开源项目https://github.com/xinychen/tensor-book的问答区与笔者进行互动交流。

作者声明:

- 撰写本文的初衷在于传播知识,为感兴趣的读者提供参考素材。
- 禁止将本文放在其他网站上,唯一下载网址为https://xinychen.github.io/books/tensor_book.pdf。
- 禁止将本文用于任何形式的商业活动。

致谢:

感谢以下贡献者在本文撰写过程中提供宝贵的建议与反馈:

- 李本正(电子科技大学)
- 王文硕 (McGill University)

- 王旭东 (McGill University)
- 张程远 (McGill University)

第一章 代数结构

长期以来,线性代数一直作为机器学习中最为重要的数学工具之一,被人们广泛用于开 发各类机器学习算法。线性代数本质上是以向量与矩阵为基本代数结构,本文要讨论的张量 分解等模型则主要以张量为基本代数结构。在过去的数十年间,借助线性代数这一基本数学 工具,机器学习中涌现出了很多经典的代数模型,这其中不乏矩阵分解、主成分分析,而张量 分解在某种程度上可看作是矩阵分解的一种衍生物。

近年来,张量分解在机器学习的众多问题中得到了很好的应用 [Kolda and Bader, 2009, Sidiropoulos et al., 2017],但关于张量的一些计算与我们所熟悉的线性代数却大相径庭,同时,张量计算相比以矩阵计算为主导的线性代数更为抽象,这使得很多与张量分解相关的内容看起来晦涩难懂。实际上,向量与矩阵都是张量的特例,可以被定义为低阶张量。一般而言,向量是一阶张量,英文表述为 first-order tensor;矩阵是二阶张量,英文表述为 second-order tensor; 三阶或者更高阶数的张量被称为高阶张量,英文表述为 higher-order tensor。在各类文献中,通常提到的张量都是特指高阶张量,当然,这在本文的叙述中也不例外。需要注意的是,在各类程序语言中,人们更愿意将张量称为多维数组。

在一个矩阵中,某一元素的位置可以说是"第*i*行、第*j*列",即要描述某一元素的位置 需用到行和列索引构成的组合(*i*,*j*)。类似地,在一个三阶张量中,描述某一元素的位置需用 到三个索引构成的组合,例如(*i*,*j*,*k*)。在处理稀疏矩阵或稀疏张量时,用索引来标记元素的 位置会节省下一些不必要的存储开支。

1.1 向量与矩阵

1.1.1 向量

向量包括行向量与列向量。在写法上,为避免混淆,向量在没有特别申明的情况下是指列 向量,给定任意向量 $x \in \mathbb{R}^n$ 表示大小为 n 的向量,写作

$$\boldsymbol{x} = (x_1, x_2, \cdots, x_n)^\top \tag{1.1}$$

或

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
(1.2)

其中,符号·^T表示转置 (transpose)。

1.1.2 矩阵

一般而言,给定任意矩阵 $X \in \mathbb{R}^{m \times n}$,矩阵的行数为 m、列数为 n,其第 (i,j) 个元素 (即矩阵的第 *i* 行、第 *j* 列元素)为

$$x_{i,j} = \boldsymbol{X}_{i,j} \tag{1.3}$$

其中, $i = 1, 2, \dots, m 与 j = 1, 2, \dots, n$ 。

单位矩阵一般记作 I_n ,大小为 $n \times n$,其对角线上的元素均为1、其他位置上的元素均为0。

1.1.3 矩阵向量化

给定任意矩阵 $X \in \mathbb{R}^{m \times n}$,若矩阵的列向量为 $x_1, x_2, \ldots, x_n \in \mathbb{R}^m$,即

$$\boldsymbol{X} = \begin{bmatrix} | & | & & | \\ \boldsymbol{x}_1 & \boldsymbol{x}_2 & \cdots & \boldsymbol{x}_n \\ | & | & & | \end{bmatrix}$$
(1.4)

则可对矩阵按列进行向量化,得到的向量为

$$\operatorname{vec}(\boldsymbol{X}) = \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \\ \vdots \\ \boldsymbol{x}_n \end{bmatrix} \in \mathbb{R}^{mn}$$
(1.5)

其中,符号 vec(·) 表示向量化操作。 与矩阵向量化相反,也可定义向量的矩阵化规则

1.2.1 高阶张量结构

高阶张量

一般而言,高阶张量可写成 $\mathcal{X} \in \mathbb{R}^{m_1 \times m_2 \times \cdots \times m_d}$,张量的阶数为 d,大小为 $m_1 \times m_2 \times \cdots \times m_d$ 。

三阶张量中的元素

这里以三阶张量为例,给定任意三阶张量 $\mathcal{X} \in \mathbb{R}^{m \times n \times t}$,其第 (i, j, k) 个元素可写作如下形式:

$$x_{i,j,k} = \mathcal{X}_{i,j,k} \tag{1.6}$$

其中, i = 1, 2, ..., m、j = 1, 2, ..., n与k = 1, 2, ..., t。

图1.1直观地展现了三阶张量元素的示意图,可以看出: 描述三阶张量中的某一元素需用 到三个索引构成的组合,例如 (*i*, *j*, *k*)。

三阶张量中的纤维

给定任意三阶张量 $\mathcal{X} \in \mathbb{R}^{m \times n \times t}$,其各个方向的纤维 (fiber) 都是向量,如图1.2所示,这些 纤维分别为向量 $\mathcal{X}_{:,j,k} \in \mathbb{R}^m$ 、 $\mathcal{X}_{i,:,k} \in \mathbb{R}^n$ 与 $\mathcal{X}_{i,j,:} \in \mathbb{R}^t$,其中,i = 1, 2, ..., m、j = 1, 2, ..., n与 k = 1, 2, ..., t。与矩阵中的行向量、列向量类似,纤维是张量的基本组成部分。

图 1.1: 三阶张量 $\mathcal{X} \in \mathbb{R}^{m \times n \times t}$ 及其第 (i, j, k) 个元素 $x_{i, j, k}$

图 1.2: 三阶张量 $\mathcal{X} \in \mathbb{R}^{m \times n \times t}$ 自三个维度的纤维

三阶张量中的切片

对于任意三阶张量 $\mathcal{X} \in \mathbb{R}^{m \times n \times t}$,可用三个维度的切片 (slice)书写该张量,其中,horizontal 切片共有 m 个, 分别为

$$\boldsymbol{\mathcal{X}}_{1,:,:}, \boldsymbol{\mathcal{X}}_{2,:,:}, \dots, \boldsymbol{\mathcal{X}}_{m,:,:} \in \mathbb{R}^{n \times t}$$
(1.7)

lateral 切片共有 n 个,分别为

$$\boldsymbol{\mathcal{X}}_{:,1,:}, \boldsymbol{\mathcal{X}}_{:,2,:}, \dots, \boldsymbol{\mathcal{X}}_{:,n,:} \in \mathbb{R}^{m \times t}$$
(1.8)

frontal 切片共有t个,分别为

$$\boldsymbol{\mathcal{X}}_{:,:,1}, \boldsymbol{\mathcal{X}}_{:,:,2}, \dots, \boldsymbol{\mathcal{X}}_{:,:,t} \in \mathbb{R}^{m \times n}$$
(1.9)

如图1.3所示,这些矩阵结构的切片是张量的基本组成部分。

(a) horizontal 切片 $\boldsymbol{\chi}_{i,:,:}$

(c) frontal 切片 $\boldsymbol{\mathcal{X}}_{:,:,k} \in \mathbb{R}^{t}$

图 1.3: 三阶张量 $\boldsymbol{\mathcal{X}} \in \mathbb{R}^{m \times n \times t}$ 自三个维度的切片

例 1. 给定张量 $\mathcal{X} \in \mathbb{R}^{2 \times 2 \times 2}$,若其 frontal 切片为

$$\boldsymbol{\mathcal{X}}_{:,:,1} = \begin{bmatrix} x_{111} & x_{121} \\ x_{211} & x_{221} \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad \boldsymbol{\mathcal{X}}_{:,:,2} = \begin{bmatrix} x_{112} & x_{122} \\ x_{212} & x_{222} \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$$
(1.10)

试写出张量 \mathcal{X} 的 lateral 切片与 horizontal 切片。

解. 张量 \mathcal{X} 的 lateral 切片为

$$\boldsymbol{\mathcal{X}}_{:,1,:} = \begin{bmatrix} x_{111} & x_{112} \\ x_{211} & x_{212} \end{bmatrix} = \begin{bmatrix} 1 & 5 \\ 3 & 7 \end{bmatrix} \quad \boldsymbol{\mathcal{X}}_{:,2,:} = \begin{bmatrix} x_{121} & x_{122} \\ x_{221} & x_{222} \end{bmatrix} = \begin{bmatrix} 2 & 6 \\ 4 & 8 \end{bmatrix}$$
(1.11)

张量 X 的 horizontal 切片为

$$\boldsymbol{\mathcal{X}}_{1,:,:} = \begin{bmatrix} x_{111} & x_{112} \\ x_{121} & x_{122} \end{bmatrix} = \begin{bmatrix} 1 & 5 \\ 2 & 6 \end{bmatrix} \quad \boldsymbol{\mathcal{X}}_{2,:,:} = \begin{bmatrix} x_{211} & x_{212} \\ x_{221} & x_{222} \end{bmatrix} = \begin{bmatrix} 3 & 7 \\ 4 & 8 \end{bmatrix}$$
(1.12)

1.2.2 高阶张量矩阵化

1.2.3 高阶张量向量化

给定任意张量 $\mathcal{X} \in \mathbb{R}^{m_1 \times m_2 \times \cdots \times m_d}$, 阶数为 d, 若其以第一个维度展开得到的矩阵为 $X_{(1)}$, 则张量向量化可写作如下形式:

$$\operatorname{vec}(\boldsymbol{\mathcal{X}}) = \operatorname{vec}(\boldsymbol{X}_{(1)})$$
 (1.13)

在张量 \mathcal{X} 中, 第 (i_1, i_2, \ldots, i_d) 个元素通过张量向量化之后, 该元素在向量中的位置为

$$\left(\sum_{k=1}^{d-1} m_k\right) \cdot i_d + \left(\sum_{k=1}^{d-2} m_k\right) \cdot i_{d-1} + \dots + m_1 \cdot i_2 + i_1 \tag{1.14}$$

例 2. 给定张量 $\mathcal{X} \in \mathbb{R}^{2 \times 2 \times 2}$,若其 frontal 切片为

$$\boldsymbol{\mathcal{X}}_{:,:,1} = \begin{bmatrix} x_{111} & x_{121} \\ x_{211} & x_{221} \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad \boldsymbol{\mathcal{X}}_{:,:,2} = \begin{bmatrix} x_{112} & x_{122} \\ x_{212} & x_{222} \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$$
(1.15)

试写出张量向量化的结果 $vec(\boldsymbol{X})$ 。

解. 根据张量向量化规则, 有

$$\operatorname{vec}(\boldsymbol{\mathcal{X}}) = \operatorname{vec}(\boldsymbol{X}_{(1)})$$
$$= \operatorname{vec}([\boldsymbol{\mathcal{X}}_{:,:,1} \quad \boldsymbol{\mathcal{X}}_{:,:,2}])$$
$$= (1, 3, 2, 4, 5, 7, 6, 8)^{\top}$$
(1.16)

1.3 特殊代数结构

1.3.1 卷积矩阵

给定向量 $\boldsymbol{x} = (x_1, x_2, \dots, x_T)^{\top} \in \mathbb{R}^T$ 与 $\boldsymbol{y} = (y_1, y_2, \dots, y_\tau)^{\top} \in \mathbb{R}^\tau$,其中 $\tau \leq T$,若两 者之间的循环卷积为 $\boldsymbol{z} = \boldsymbol{x} \star \boldsymbol{y} \in \mathbb{R}^T$,则向量 \boldsymbol{z} 的任意元素为

$$z_t = \sum_{k=1}^{'} x_{t-k+1} y_k, \, \forall t \in \{1, 2, \dots, T\}$$
(1.17)

其中,当 $t+1 \le k$ 时,则令 $x_{t-k+1} = x_{t-k+1+T}$ 。 例 3. 给定向量 $x = (0,1,2,3,4)^{\top}$ 与 $y = (2,-1,3)^{\top}$,试写出循环卷积 $z = x \star y$ 。 解. 根据定义,有

$$\boldsymbol{z} = \boldsymbol{x} \star \boldsymbol{y} = \begin{bmatrix} x_1 y_1 + x_5 y_2 + x_4 y_3 \\ x_2 y_1 + x_1 y_2 + x_5 y_3 \\ x_3 y_1 + x_2 y_2 + x_1 y_3 \\ x_4 y_1 + x_3 y_2 + x_2 y_3 \\ x_5 y_1 + x_4 y_2 + x_3 y_3 \end{bmatrix} = \begin{bmatrix} 0 \times 2 + 4 \times (-1) + 3 \times 3 \\ 1 \times 2 + 0 \times (-1) + 4 \times 3 \\ 2 \times 2 + 1 \times (-1) + 0 \times 3 \\ 3 \times 2 + 2 \times (-1) + 1 \times 3 \\ 4 \times 2 + 3 \times (-1) + 2 \times 3 \end{bmatrix} = \begin{bmatrix} 5 \\ 14 \\ 3 \\ 7 \\ 11 \end{bmatrix}$$
(1.18)

由于循环卷积在计算过程中呈现出线性结构。根据循环卷积的运算规则,可定义一种线 性变换,使得

$$\boldsymbol{x} \star \boldsymbol{y} = \mathcal{C}_{\tau}(\boldsymbol{x})\boldsymbol{y} \tag{1.19}$$

其中, C_{τ} : $\mathbb{R}^T \to \mathbb{R}^{T \times \tau}$ 表示构造卷积矩阵的算子; 在这里, 卷积矩阵为

$$\mathcal{C}_{\tau}(\boldsymbol{x}) = \begin{bmatrix}
x_1 & x_T & x_{T-1} & \cdots & x_{T-\tau+2} \\
x_2 & x_1 & x_T & \cdots & x_{T-\tau+3} \\
x_3 & x_2 & x_1 & \cdots & x_{T-\tau+4} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_T & x_{T-1} & x_{T-2} & \cdots & x_{T-\tau+1}
\end{bmatrix} \in \mathbb{R}^{T \times \tau}$$
(1.20)

其中,卷积矩阵的列数为τ。

例 4. 给定向量 $\boldsymbol{x} = (0, 1, 2, 3, 4)^{\top}$ 与 $\boldsymbol{y} = (2, -1, 3)^{\top}$, 试写出卷积矩阵 $C_3(\boldsymbol{x})$ 与循环卷积 $\boldsymbol{z} = C_3(\boldsymbol{x})\boldsymbol{y}_{\circ}$

解. 根据定义,向量 x 对应的卷积矩阵为

$$\mathcal{C}_{3}(\boldsymbol{x}) = \begin{bmatrix} 0 & 4 & 3 \\ 1 & 0 & 4 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \\ 4 & 3 & 2 \end{bmatrix}$$
(1.21)

由此,向量x与y的循环卷积为

$$\boldsymbol{z} = \mathcal{C}_{3}(\boldsymbol{x})\boldsymbol{y} = \begin{bmatrix} 0 & 4 & 3 \\ 1 & 0 & 4 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \\ 4 & 3 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 5 \\ 14 \\ 3 \\ 7 \\ 11 \end{bmatrix}$$
(1.22)

1.3.2 Hankel 矩阵

1.3.3 Toeplitz 矩阵

1.3.4 构造特定矩阵

例 5. 给定矩阵 $X \in \mathbb{R}^{N \times 5}$, 即

$$\boldsymbol{X} = \begin{bmatrix} | & | & | & | & | \\ \boldsymbol{x}_1 & \boldsymbol{x}_2 & \boldsymbol{x}_3 & \boldsymbol{x}_4 & \boldsymbol{x}_5 \\ | & | & | & | & | \end{bmatrix}$$
(1.23)

试将如下线性方程组写成矩阵形式。

$$\begin{cases} \boldsymbol{x}_{3} = \boldsymbol{A}_{1}\boldsymbol{x}_{2} + \boldsymbol{A}_{2}\boldsymbol{x}_{1} \\ \boldsymbol{x}_{4} = \boldsymbol{A}_{1}\boldsymbol{x}_{3} + \boldsymbol{A}_{2}\boldsymbol{x}_{2} \\ \boldsymbol{x}_{5} = \boldsymbol{A}_{1}\boldsymbol{x}_{4} + \boldsymbol{A}_{2}\boldsymbol{x}_{3} \end{cases}$$
(1.24)

其中, $A_1, A_2 \in \mathbb{R}^{N \times N}$ 已知。

解. 若令

$$\boldsymbol{\Psi}_{0} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
(1.25)

则

$$\boldsymbol{X}\boldsymbol{\Psi}_{0}^{\top} = \begin{bmatrix} | & | & | & | & | \\ \boldsymbol{x}_{1} & \boldsymbol{x}_{2} & \boldsymbol{x}_{3} & \boldsymbol{x}_{4} & \boldsymbol{x}_{5} \\ | & | & | & | & | \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} | & | & | \\ \boldsymbol{x}_{3} & \boldsymbol{x}_{4} & \boldsymbol{x}_{5} \\ | & | & | \end{bmatrix}$$
(1.26)

同理,令

$$\boldsymbol{\Psi}_{1} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \quad \boldsymbol{\Psi}_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$
(1.27)

则

$$\boldsymbol{X}\boldsymbol{\Psi}_{1}^{\mathsf{T}} = \begin{bmatrix} | & | & | \\ \boldsymbol{x}_{2} & \boldsymbol{x}_{3} & \boldsymbol{x}_{4} \\ | & | & | \end{bmatrix} \quad \boldsymbol{X}\boldsymbol{\Psi}_{2}^{\mathsf{T}} = \begin{bmatrix} | & | & | \\ \boldsymbol{x}_{1} & \boldsymbol{x}_{2} & \boldsymbol{x}_{3} \\ | & | & | \end{bmatrix}$$
(1.28)

由此,线性方程组可写作如下形式:

$$\boldsymbol{X}\boldsymbol{\Psi}_{0}^{\top} = \boldsymbol{A}_{1}\boldsymbol{X}\boldsymbol{\Psi}_{1}^{\top} + \boldsymbol{A}_{2}\boldsymbol{X}\boldsymbol{\Psi}_{2}^{\top}$$
(1.29)

例 6 (向量自回归). 对于多元时间序列,若任意时刻 t 对应的观测数据为向量 $x_t \in \mathbb{R}^N$,则向量自回归的表达式为

$$\boldsymbol{x}_{t} = \sum_{k=1}^{a} \boldsymbol{A}_{k} \boldsymbol{x}_{t-k} + \boldsymbol{\epsilon}_{t}, t = 2, 3, \dots, T$$
 (1.30)

其中, A_1, A_2, \ldots, A_d 为自回归过程的系数矩阵 (coefficient matrix); d 为自回归过程的阶数 (order); $\epsilon_t \in \mathbb{R}^N$ 为残差向量。

令

$$\boldsymbol{X} = \begin{bmatrix} | & | & | \\ \boldsymbol{x}_1 & \boldsymbol{x}_2 & \cdots & \boldsymbol{x}_T \\ | & | & | \end{bmatrix} \in \mathbb{R}^{N \times T}$$
(1.31)

若构造分块矩阵

$$\Psi_{k} = \begin{bmatrix} 0 & \cdots & 0 & 1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 1 & 0 & \cdots & 0 \\ \hline & & & & & & \\ \hline & & & & & & \\ e \begin{bmatrix} \mathbf{0}_{(T-d)\times(d-k)} & \mathbf{I}_{T-d} & \mathbf{0}_{(T-d)\times k} \end{bmatrix} \in \mathbb{R}^{(T-d)\times T}, \ k = 0, 1, \dots, d$$
(1.32)

则向量自回归可写作如下形式:

$$\boldsymbol{X}\boldsymbol{\Psi}_{0}^{\top} = \sum_{k=1}^{d} \boldsymbol{A}_{k} \boldsymbol{X}\boldsymbol{\Psi}_{k}^{\top} + \boldsymbol{E}$$
(1.33)

其中, $E \in \mathbb{R}^{N \times (T-d)}$ 为残差矩阵。

1.3 特殊代数结构

参考资料

1. Stephen Boyd, Lieven Vandenberghe (2018). Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares. https://web.stanford.edu/~boyd/vmls/vmls.pdf

第二章 矩阵分解

矩阵分解即将一个矩阵表示或近似为若干个矩阵的乘积。矩阵分解已广泛应用于数据压 缩、降噪、特征发现、推荐系统、缺失值补全等领域。同时,理解矩阵分解是理解张量分解的 有效途径。矩阵分解的种类有很多,本章将介绍一些常用矩阵分解。

2.1 特征值分解

特征值分解 (eigenvalue decomposition) 是将矩阵分解为由其特征值和特征向量表示的 矩阵之积的方法,在一些情境下也被称为谱分解 (spectral decomposition)。注意只有可对角 化¹的方阵才能进行特征值分解。下面我们先回顾一下特征值和特征向量的定义,再引出特征 值分解。

对于方阵 A, 若存在非零向量 u, 使得

$$Au = \lambda u \tag{2.1}$$

则称 u 为 A 的一个特征向量 (eigenvector), λ 为对应于 u 的特征值 (eigenvalue)。关于特征 值和特征向量的计算,请参考大学线性代数教材。

若 A 可对角化,则存在 n 个线性无关的特征向量 u_1, u_2, \ldots, u_n ,和对应的特征值 $\lambda_1, \lambda_2, \ldots, \lambda_n$ 。 因此,我们可以用公式(2.1)得到 n 组等式,用向量的形式可以写为:

$$A\begin{bmatrix} | & | & | \\ u_1 & u_2 & \cdots & u_n \\ | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | \\ u_1 & u_2 & \cdots & u_n \\ | & | & | \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$
(2.2)
$$AU = U\Lambda$$

由于由 u_1, u_2, \ldots, u_n 构成的特征向量组线性无关, 故 U 可逆, 故由上式可得到 A 的特征值 分解:

$$\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Lambda}\boldsymbol{U}^{-1} \tag{2.3}$$

特别的,若 A 为实对称阵,则其特征向量可化为一组标准正交(orthonormal)向量,故特征 值分解能够进一步写为:

$$\boldsymbol{A} = \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{\top} \tag{2.4}$$

特征值分解的一个典型应用为求线性动态系统的稳态。下面用一个虚拟的例子来说明这一点。

例 7. 苹果手机用户下一年还用苹果手机的概率为 0.8, 换成安卓手机的概率为 0.2。安卓手 机用户下一年还用安卓手机的概率为 0.7, 换成苹果手机的概率为 0.3。若当前苹果和安卓用

¹对于方阵 A,若存在可逆矩阵 P,使得 $P^{-1}AP$ 为对角矩阵,则称 A可对角化。实对称阵均可对角化。

户各占 50%,问 n 年后 (n 足够大) 市场达到均衡时,苹果手机和安卓手机的用户比例分别 是多少?

解. 一年后苹果用户比例为 0.8×0.5+0.3×0.5 = 0.55, 安卓用户比例为 0.2×0.5+0.7×0.5 = 0.45, 可用概率转移矩阵 *A* 矩阵表示为:

$$\begin{bmatrix} 0.55\\ 0.45 \end{bmatrix} = \begin{bmatrix} 0.8 & 0.3\\ 0.2 & 0.7 \end{bmatrix} \begin{bmatrix} 0.5\\ 0.5 \end{bmatrix}$$

$$\boldsymbol{p}_1 = \boldsymbol{A}\boldsymbol{p}_0$$
(2.5)

以此类推, n 年后的苹果和安卓的市场份额 $p_n = A^n p_0$ 。为得到当 n 足够大市场均衡后的份额, 可利用概率转移矩阵 A 的特征值分解进行求解:

$$\lim_{n \to \infty} \boldsymbol{A}^{n} \boldsymbol{p}_{0} = \lim_{n \to \infty} (\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{-1})^{n} \boldsymbol{p}_{0}$$

$$= \lim_{n \to \infty} \boldsymbol{U} \boldsymbol{\Lambda}^{n} \boldsymbol{U}^{-1} \boldsymbol{p}_{0}$$

$$= \lim_{n \to \infty} \begin{bmatrix} 1.5 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0.5 \end{bmatrix}^{n} \begin{bmatrix} 1.5 & -1 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$$

$$= \begin{bmatrix} 1.5 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1.5 & -1 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} = \begin{bmatrix} 0.6 \\ 0.4 \end{bmatrix}$$
(2.6)

故当 n 足够大时,苹果手机和安卓手机的市场份额分别为 0.6 和 0.4。

2.2.1 基本定义

只有可对角化的方阵才存在特征值分解,但任意复数域的矩阵均存在奇异值分解(singular value decomposition, SVD),故奇异值分解的适用范围更广。矩阵 *A* 奇异值分解的完整形式为:

$$\boldsymbol{A}_{m \times n} = \boldsymbol{U}_{m \times m} \boldsymbol{\Sigma}_{m \times n} \boldsymbol{V}_{n \times n}^{\top}$$
(2.7)

为清晰起见,此处用下标标出了矩阵的维度。矩阵 U 和 V 为标准正交矩阵,矩阵中的列 u_1, \dots, u_m 和 v_1, \dots, v_n 是两组标准正交基,分别被称作左奇异向量 (left-singular vectors) 和右奇异向量 (right-singular vectors)。 Σ 是一个 $m \times n$ 的对角矩阵,对角线上的元素 $\sigma_i = \Sigma_{ii}$ 被称为奇异值。奇异值均为非负实数,奇异值的个数 r 等于矩阵 A 的矩阵的秩,且通常按照 从大到小的顺序排列。若仅取非零的奇异值和其所对应的左右奇异向量,可有奇异值分解的 紧凑形式:

$$\boldsymbol{A}_{m \times n} = \boldsymbol{U}_{m \times r} \boldsymbol{\Sigma}_{r \times r} \boldsymbol{V}_{n \times r}^{\top}$$
$$= \sum_{i=1}^{r} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{\top}, \quad r = \operatorname{rank}(\boldsymbol{A})$$
(2.8)

紧凑形式的计算结果和完整形式一致,但当矩阵 A 的秩远小于矩阵的维度时,紧凑形式能极 大地节省存储空间。

奇异值分解可由特征值分解计算得到。一个 $m \times n$ 的矩阵 A 不一定存在特征值分解,但 AA^{\top} 和 $A^{\top}A$ 都是对称的方阵,且均存在特征值分解。对于任意矩阵 A,容易得到特征值分解和奇异值分解的如下关系:

$$AA^{\top} = (U\Sigma V^{\top})(V\Sigma^{\top}U^{\top}) = U\Sigma\Sigma^{\top}U^{\top} = U\Lambda U^{\top}$$

$$A^{\top}A = (V\Sigma^{\top}U^{\top})(U\Sigma V^{\top}) = V\Sigma^{\top}\Sigma V^{\top} = V\Lambda V^{\top}$$
(2.9)

等式的最右端即为特征值分解。故 AA^{\top} 的特征向量为 A 的左奇异向量,特征值为 A 的奇 异值的平方; $A^{\top}A$ 的特征向量为 A 的右奇异向量,特征值为 A 的奇异值的平方。

例 8. 利用特征值分解计算矩阵 $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}$ 的奇异值分解,写出完整和紧凑形式。

解.
$$AA^{\top} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
, 其特征值和特征向量分别为: $\lambda_1 = 5, \lambda_2 = 0, \ \boldsymbol{u}_1 = \begin{bmatrix} \sqrt{5} & \frac{2\sqrt{5}}{5} \end{bmatrix}^{\top}, \ \boldsymbol{u}_2 = \begin{bmatrix} -\frac{2\sqrt{5}}{5}, \frac{\sqrt{5}}{5} \end{bmatrix}^{\top}$ 。
 $A^{\top}A = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, 其特征值和特征向量分别为: $\lambda_1 = 5, \lambda_2 = 0, \lambda_3 = 0, \ \boldsymbol{v}_1 = \begin{bmatrix} 1, 0, 0 \end{bmatrix}^{\top}, \ \boldsymbol{v}_2 = \begin{bmatrix} 0, 1, 0 \end{bmatrix}^{\top}, \ \boldsymbol{v}_3 = \begin{bmatrix} 0, 0, 1 \end{bmatrix}^{\top}$ 。

由于 $\lambda_2 = \lambda_3 = 0$, 故 **A** 只有一个奇异值为 $\sqrt{\lambda_1} = \sqrt{5}$ (奇异值的个数等于矩阵 **A** 的秩)。根据公式2.7和2.8定义的矩阵维度,可得到 **A** 的奇异值分解的完整和紧凑形式分别为:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{5}}{5} & -\frac{2\sqrt{5}}{5} \\ \frac{2\sqrt{5}}{5} & \frac{\sqrt{5}}{5} \end{bmatrix} \begin{bmatrix} \sqrt{5} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\sqrt{5}}{5} \\ \frac{2\sqrt{5}}{5} \end{bmatrix} \begin{bmatrix} \sqrt{5} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$
(2.10)

注:为便于理解 SVD 的原理,此处演示了基于特征值的方法计算 SVD。计算机软件中一般采用更高效和准确的方式计算 SVD。

2.2.2 截断奇异值分解

在介绍截断奇异值分解之前,不妨考虑一个低秩矩阵逼近的问题: 对秩为 r 的矩阵 A, 求 一个秩为 k (1 $\leq k < r$) 的矩阵 \tilde{A} , 使得 $\tilde{A} = A$ 间的平方和误差最小。即

$$\min_{\tilde{\boldsymbol{A}}} \|\boldsymbol{A} - \tilde{\boldsymbol{A}}\|_{F}^{2}$$
s.t. $\operatorname{rank}(\tilde{\boldsymbol{A}}) = k$

$$(2.11)$$

其中 $\|\cdot\|_F$ 为矩阵的 Frobenius 范数(简称 F 范数)。这是一个经典的低秩矩阵逼近问题, Eckart-Young 定理给出了该问题的最优解为:

$$\tilde{\boldsymbol{A}} = \tilde{\boldsymbol{U}}\tilde{\boldsymbol{\Sigma}}\tilde{\boldsymbol{V}}^{\top} \tag{2.12}$$

其中 Σ 为 A 的最大的 k 个奇异值组成的 $k \times k$ 对角矩阵, \tilde{U} 和 \tilde{V} 分别为这 k 个奇异值对 应的左、右奇异向量组成的矩阵。公式2.12即为截断奇异值分解。

截断奇异值分解与原矩阵的平方和误差与奇异值的大小有关。由于 u_1, \dots, u_m 正交, v_1, \dots, v_n 正交,因此矩阵的内积 $\langle \sigma_i u_i v_i \top, \sigma_j u_j v_j^\top \rangle = 0$ $(i \neq j)$ 。故可得:

$$\|\boldsymbol{A}\|_{F}^{2} = \|\sum_{i=1}^{r} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{\top}\|_{F}^{2} = \sum_{i=1}^{r} \sigma_{i}^{2} \|\boldsymbol{u}_{i} \boldsymbol{v}_{i}^{\top}\|_{F}^{2} = \sum_{i=1}^{r} \sigma_{i}^{2}$$
(2.13)

即一个矩阵的 F 范数的平方等于其所有奇异值的平方和。因此,用前 k 个奇异值的截断奇异 值分解的平方和误差为 $\|A - \tilde{A}\|_F^2 = \sum_{i=k+1}^r \sigma_i^2$ 。

例 9. 基于奇异值分解的图像压缩。图 2.1(a) 为一张 512×512 的大熊猫灰度图像。令 k = 10,50,100,用秩为 k 的矩阵近似原图像,使得平方和误差最小。

解. 用公式2.12计算得到近似矩阵 \tilde{A} ,结果如图2.1(b)、(c)、(d) 所示。当 k = 10 时,仅能辨 认出大熊猫的轮廓;当 k = 50 时,图像辨认度较好;当 k = 100 时,图像与原图已经非常接 近。画出原图像的奇异值和累计解释方差 $\left(\sum_{i=1}^{k} \sigma_i^2 / \sum_{i=1}^{r} \sigma_i^2\right)$,如图2.2所示。奇异值的大小

(a) 原图像

(b) k = 10

(c) k = 50

(d) k = 100

图 2.1: 基于截断奇异值分解的图像压缩

下降得非常快,头部的奇异值占了大部分解释方差。选取合适的前 k 个奇异值能在保留主要 图像信息的同时节省存储空间。

图 2.2: 大熊猫图像的奇异值和累计解释方差 (三个红点分别表示 k = 10,50,100 的情况)

2.2.3 随机奇异值分解

超高维数据(如高清图像、视频,大规模推荐系统)已经越来越常见。高维数据的奇异值 分解非常耗时,人们一直在寻找一种更快的计算方法。随机奇异值分解(randomized SVD)正 是这样一种算法,它是一种利用随机投影的近似算法,极大加快了大型矩阵奇异值分解的速 度。随机奇异值分解的基本思路为:(1)将原矩阵投影到一个子空间上,这个子空间的基向量 的数目远小于原矩阵的秩,但近似了原矩阵的列空间²;(2)对投影得到的小矩阵进行奇异值 分解;(3)最后将奇异值分解的结果投影回原空间。这样做的好处是,投影后的矩阵较小,因 此奇异值分解的计算量也较小。这样做的原理是,实际数据往往具有低秩的特点,能被一组数 目很少的基向量表示而不损失过多信息。

构造一组基向量(一个子空间)以近似表示原矩阵的列空间是随机奇异值分解的关键,这 是利用随机投影实现的。对于一个 *m* × *n* 的矩阵 *A*,其秩为 *r*,假定我们想用 *k*(*k* ≪ *r*)个 基向量近似 *A* 的列空间。随机奇异值分解的一般步骤如下:

1. 利用随机投影得到基向量矩阵

- 生成一个服从 i.i.d. 高斯分布³的随机投影矩阵 $\Omega \in \mathbb{R}^{n \times k}$ 。
- 用随机矩阵 Ω 对原矩阵的列空间做"采样",得到一个大小为 m×k 的新矩阵 Y:
 Y = AΩ。由于 Ω 是随机的,这相当于新矩阵 Y 随机保存了原矩阵列空间的重要信息(即用 Y 的列空间近似 A 的列空间,下文将介绍改进算法以实现更好的近似),且 Y 的秩更小。
- 对 *Y* 进行 QR 分解: *Y* = *QR*,得到一个 *m*×*k* 的正交矩阵 *Q*,这个矩阵的列向 量就是我们要找的基向量。

2. 在子空间中计算奇异值分解

- 将 **A** 投影到 **Q** 的列空间,得到一个 $k \times n$ 的矩阵 **B**: $B = Q^{\top} A$.
- 计算 **B** 的奇异值分解,得 $B = \tilde{U}\Sigma V^T$ 。其中,矩阵 **B** 的行数为 k,相比于对矩 阵 **A** 直接进行奇异值分解就显得更加"经济"了。

3. 将左奇异向量投影回原空间

• 将 \tilde{U} 投影回原空间, U: $U = Q\tilde{U}$, 得到矩阵 A 的左奇异向量的近似结果。

上述为最简单随机奇异值分解。但当 A 的奇异值衰减较慢时,这种方法的效果会变差。 因为此时简单的随机投影 $Y = A\Omega$ 不能很好地使 Y 列空间近似 A 的列空间。我们想要使 Y 能尽可能保留 A 中较大奇异值对应的信息。而**幂迭代法 (Power iteration)** 很好地解决 了这个问题。我们定义一个新的矩阵:

$$\boldsymbol{A}^{(q)} = \boldsymbol{A} (\boldsymbol{A}^{\top} \boldsymbol{A})^{q} \tag{2.14}$$

通过几轮幂迭代,这个新矩阵的奇异值衰减得更快了 $(A^{(q)} = U\Sigma^{2q-1}V^*)$ 。而且 $A^{(q)}$ 和 A的列空间是相同的。因此,我们可以用 $A^{(q)}$ 代替 A,从令 $Y = A^{(q)}\Omega$ 以达到更好的近似结果。

²也可对行空间做近似,下文均以列空间为例。

³也有用其他分布,如均匀分布。但一般情况下高斯分布即可。

(a) 原图像

(b) SVD, k = 50

(c) Randomized SVD, k = 50

图 2.3: 奇异值分解和随机奇异值分解效果对比

2.2.4 奇异值分解的应用

2.3 动态模态分解

2.4 矩阵分解

第三章 Kronecker 积与 Kronecker 分解

Kronecker 积是张量计算中非常重要的一种运算规则,不同于常见的矩阵运算规则,给定 任意两个矩阵,两者之间进行 Kronecker 积得到的是一个分块矩阵。Kronecker 分解是一种以 Kronecker 积为基础的分解形式,又被称为 Kronecker 积分解、Kronecker 积逼近 (Kronecker product approximation)、最近 Kronecker 积 (nearest Kronecker product)等,它是矩阵计 算与张量计算中十分重要的逼近问题。本章首先介绍 Kronecker 积的定义与性质,然后引出 Kronecker 分解的一般形式、优化问题、求解过程等,最后给出以 Kronecker 分解为基础的模 型参数压缩问题。

3.1 Kronecker 积定义

3.1.1 基本定义

Kronecker 积是以德国数学家 Leopold Kronecker 的名字命名的运算规则,已广泛应用于 各类矩阵计算以及张量计算算法中。从定义出发,给定任意矩阵 $X \in \mathbb{R}^{m \times n}$ 与 $Y \in \mathbb{R}^{p \times q}$,则 两者之间的 Kronecker 积为

$$\boldsymbol{X} \otimes \boldsymbol{Y} = \begin{bmatrix} x_{11}\boldsymbol{Y} & x_{12}\boldsymbol{Y} & \cdots & x_{1n}\boldsymbol{Y} \\ x_{21}\boldsymbol{Y} & x_{22}\boldsymbol{Y} & \cdots & x_{2n}\boldsymbol{Y} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1}\boldsymbol{Y} & x_{m2}\boldsymbol{Y} & \cdots & x_{mn}\boldsymbol{Y} \end{bmatrix} \in \mathbb{R}^{(mp) \times (nq)}$$
(3.1)

其中,符号 \otimes 表示 Kronecker 积。这里的 Kronecker 积得到的矩阵大小为 $(mp) \times (nq)$,在 写法上符合线性代数中对分块矩阵 (block matrix) 的定义,其中,分块矩阵的子矩阵是由矩 阵 X 的每个元素与矩阵 Y 相乘得到。

矩阵 X = Y 之间的 Kronecker 积存在前后顺序,根据 Kronecker 积的定义,可得到矩阵 Y = X 之间的 Kronecker 积为

$$\mathbf{Y} \otimes \mathbf{X} = \begin{bmatrix} y_{11}\mathbf{X} & y_{12}\mathbf{X} & \cdots & y_{1q}\mathbf{X} \\ y_{21}\mathbf{X} & y_{22}\mathbf{X} & \cdots & y_{2q}\mathbf{X} \\ \vdots & \vdots & \ddots & \vdots \\ y_{p1}\mathbf{X} & y_{p2}\mathbf{X} & \cdots & y_{pq}\mathbf{X} \end{bmatrix} \in \mathbb{R}^{(mp) \times (nq)}$$
(3.2)

尽管矩阵 $X \otimes Y$ 与矩阵 $Y \otimes X$ 大小一致,但两者并不相等,因此,Kronecker 积不存 在交换律。

例 10. 给定矩阵
$$X = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 与 $Y = \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix}$,试写出两者之间的 Kronecker 积 $X \otimes Y$ 与 $Y \otimes X$ 。

解. 根据 Kronecker 积定义,有

$$\mathbf{X} \otimes \mathbf{Y} = \begin{bmatrix} 1 \times \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \\ 3 \times \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} & 2 \times \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} \\ 4 \times \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 5 & 6 & 7 & 10 & 12 & 14 \\ 8 & 9 & 10 & 16 & 18 & 20 \\ 15 & 18 & 21 & 20 & 24 & 28 \\ 24 & 27 & 30 & 32 & 36 & 40 \end{bmatrix}$$
(3.3)
$$\mathbf{Y} \otimes \mathbf{X} = \begin{bmatrix} 5 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 8 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} & 6 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 1 & 2 \\ 3 & 4 \end{bmatrix} & 7 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 10 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 5 & 10 & 6 & 12 & 7 & 14 \\ 15 & 20 & 18 & 24 & 21 & 28 \\ 8 & 16 & 9 & 18 & 10 & 20 \\ 24 & 32 & 27 & 36 & 30 & 40 \end{bmatrix}$$
(3.4)
$$\mathbf{M} \mathbf{11}. \ \& \mathbb{Z} \ \& \mathbb{X} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \ \Rightarrow \mathbf{Y} = \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix}, \ \ \breve{K} \ \breve{P} \ \And \ \mathsf{S} \ \breve{K} \ (\mathbf{X} \otimes \mathbf{Y})^{\mathsf{T}} = \mathbf{X}^{\mathsf{T}} \otimes \mathbf{Y}^{\mathsf{T}} \ \And \ \breve{K} \ \breve{K} \ \breve{K} \ \breve{L} \ \breve{K} \$$

解. 根据 Kronecker 积定义,有

$$\boldsymbol{X}^{\top} \otimes \boldsymbol{Y}^{\top} = \begin{bmatrix} 5 & 8 \\ 6 & 9 \\ 7 & 10 \\ 5 & 8 \\ 2 \times \begin{bmatrix} 5 & 8 \\ 6 & 9 \\ 7 & 10 \\ 5 & 8 \\ 6 & 9 \\ 7 & 10 \end{bmatrix} \xrightarrow{4 \times \begin{bmatrix} 5 & 8 \\ 6 & 9 \\ 7 & 10 \\ 5 & 8 \\ 6 & 9 \\ 7 & 10 \end{bmatrix} = \begin{bmatrix} 5 & 8 & 15 & 24 \\ 6 & 9 & 18 & 27 \\ 7 & 10 & 21 & 30 \\ 10 & 16 & 20 & 32 \\ 12 & 18 & 24 & 36 \\ 14 & 20 & 28 & 40 \end{bmatrix}$$
(3.5)

在这里,等式 $(X \otimes Y)^{\top} = X^{\top} \otimes Y^{\top}$ 是成立的。

例 12. 给定向量 $x = (1,2)^{\top}$ 与 $y = (3,4)^{\top}$, 试写出 $x \otimes y$ 与 $x \otimes y^{\top}$ 。

解. 根据 Kronecker 积定义,有

$$\boldsymbol{x} \otimes \boldsymbol{y} = \begin{bmatrix} 1 \times \begin{bmatrix} 3 \\ 4 \\ 2 \times \begin{bmatrix} 3 \\ 4 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ 6 \\ 8 \end{bmatrix}$$
(3.6)

$$\boldsymbol{x} \otimes \boldsymbol{y}^{\top} = \begin{bmatrix} 1 \times \begin{bmatrix} 3 & 4 \\ 2 \times \begin{bmatrix} 3 & 4 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 6 & 8 \end{bmatrix}$$
(3.7)

在这里, $\boldsymbol{x} \otimes \boldsymbol{y}^{\top} = \boldsymbol{x} \boldsymbol{y}^{\top}$, 即向量外积。

例 13 (向量自回归). 对于多元时间序列, 向量自回归可写作如下形式 (参见例6):

$$\boldsymbol{X}\boldsymbol{\Psi}_{0}^{\top} = \sum_{k=1}^{d} \boldsymbol{A}_{k} \boldsymbol{X}\boldsymbol{\Psi}_{k}^{\top} + \boldsymbol{E}$$
(3.8)

若令

$$\boldsymbol{A} = \begin{bmatrix} \boldsymbol{A}_1 & \boldsymbol{A}_2 & \cdots & \boldsymbol{A}_d \end{bmatrix} \in \mathbb{R}^{N \times (dN)}$$
$$\boldsymbol{\Psi} = \begin{bmatrix} \boldsymbol{\Psi}_1 & \boldsymbol{\Psi}_2 & \cdots & \boldsymbol{\Psi}_d \end{bmatrix} \in \mathbb{R}^{(T-d) \times (dT)}$$
(3.9)

则向量自回归可进一步写作如下形式:

$$\boldsymbol{X}\boldsymbol{\Psi}_{0}^{\top} = \boldsymbol{A}(\boldsymbol{I}_{d}\otimes\boldsymbol{X})\boldsymbol{\Psi}^{\top} + \boldsymbol{E}$$
(3.10)

3.1.2 Khatri-Rao 积

以 Kronecker 积为基础,可定义另一种十分重要的运算规则,即 Khatri-Rao 积。给定任意矩阵

$$\boldsymbol{X} = \begin{bmatrix} | & | & | \\ \boldsymbol{x}_1 & \boldsymbol{x}_2 & \cdots & \boldsymbol{x}_d \\ | & | & | \end{bmatrix} \in \mathbb{R}^{m \times d} \quad \boldsymbol{Y} = \begin{bmatrix} | & | & | \\ \boldsymbol{y}_1 & \boldsymbol{y}_2 & \cdots & \boldsymbol{y}_d \\ | & | & | \end{bmatrix} \in \mathbb{R}^{n \times d}$$
(3.11)

若两个矩阵列数相同,则两者之间的 Khatri-Rao 积为

-

$$\boldsymbol{X} \odot \boldsymbol{Y} = \begin{bmatrix} | & | & | \\ \boldsymbol{x}_1 \otimes \boldsymbol{y}_1 & \boldsymbol{x}_2 \otimes \boldsymbol{y}_2 & \cdots & \boldsymbol{x}_d \otimes \boldsymbol{y}_d \\ | & | & | \end{bmatrix} \in \mathbb{R}^{(mn) \times d}$$
(3.12)

其中,列向量是由 X 与 Y的列向量进行 Kronecker 积运算得到的。

例 14. 给定矩阵
$$\boldsymbol{X} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 与 $\boldsymbol{Y} = \begin{bmatrix} 5 & 6 \\ 7 & 8 \\ 9 & 10 \end{bmatrix}$, 试写出 $\boldsymbol{X} \odot \boldsymbol{Y}$ 。

解. 根据 Khatri-Rao 积定义,有

$$\mathbf{X} \odot \mathbf{Y} = \begin{bmatrix} 1\\3 \end{bmatrix} \otimes \begin{bmatrix} 5\\7\\9 \end{bmatrix} \begin{bmatrix} 2\\4 \end{bmatrix} \otimes \begin{bmatrix} 6\\8\\10 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 5 & 12\\7 & 16\\9 & 20\\15 & 24\\21 & 32\\27 & 40 \end{bmatrix}$$
(3.13)

3.2 Kronecker 积基本性质

3.2.1 结合律与分配律

在小学数学中,我们学习了加减乘除的运算规则。以乘法为例,不妨重温一下烙印在我们 脑海中的基本概念:

- 乘法结合律: $x \times y \times z = x \times (y \times z)$
- 乘法分配律: $x \times z + y \times z = (x + y) \times z$

由于 Kronecker 积本质上也是元素间相乘,所以同样存在结合律与分配律。对于任意矩 阵 *X*、*Y* 与 *Z*,结合律可归纳为

$$\boldsymbol{X} \otimes \boldsymbol{Y} \otimes \boldsymbol{Z} = \boldsymbol{X} \otimes (\boldsymbol{Y} \otimes \boldsymbol{Z}) \tag{3.14}$$

分配律可归纳为

$$\boldsymbol{X} \otimes \boldsymbol{Z} + \boldsymbol{Y} \otimes \boldsymbol{Z} = (\boldsymbol{X} + \boldsymbol{Y}) \otimes \boldsymbol{Z}$$
(3.15)

例 15. 给定矩阵 $X = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ 、 $Y = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$ 与 $Z = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, 试写出 $X \otimes Y \otimes Z$ 与 $X \otimes (Y \otimes Z)$ 。

解. 根据 Kronecker 积定义,有

$$\boldsymbol{X} \otimes \boldsymbol{Y} = \begin{bmatrix} 5 & 6 & 10 & 12 \\ 7 & 8 & 14 & 16 \\ 15 & 18 & 20 & 24 \\ 21 & 24 & 28 & 32 \end{bmatrix}$$
(3.16)

$$\mathbf{Y} \otimes \mathbf{Z} = \begin{bmatrix} 5 & 5 & 6 & 6 \\ 5 & 5 & 6 & 6 \\ 7 & 7 & 8 & 8 \\ 7 & 7 & 8 & 8 \end{bmatrix}$$
(3.17)

从而,可得到

$$\boldsymbol{X} \otimes \boldsymbol{Y} \otimes \boldsymbol{Z} = \begin{bmatrix} 5 & 5 & 6 & 6 & 10 & 10 & 12 & 12 \\ 5 & 5 & 6 & 6 & 10 & 10 & 12 & 12 \\ 7 & 7 & 8 & 8 & 14 & 14 & 16 & 16 \\ 15 & 15 & 18 & 18 & 20 & 20 & 24 & 24 \\ 15 & 15 & 18 & 18 & 20 & 20 & 24 & 24 \\ 21 & 21 & 24 & 24 & 28 & 28 & 32 & 32 \\ 21 & 21 & 24 & 24 & 28 & 28 & 32 & 32 \end{bmatrix} = \boldsymbol{X} \otimes (\boldsymbol{Y} \otimes \boldsymbol{Z})$$
(3.18)

例 16. 给定
$$X = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
、 $Y = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$ 与 $Z = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, 试写出 $X \otimes Z + Y \otimes Z$ 与 $(X + Y) \otimes Z$ 。

解. 根据 Kronecker 积定义,有

$$\boldsymbol{X} \otimes \boldsymbol{Z} + \boldsymbol{Y} \otimes \boldsymbol{Z} = \begin{bmatrix} 1 & 1 & 2 & 2 \\ 1 & 1 & 2 & 2 \\ 3 & 3 & 4 & 4 \\ 3 & 3 & 4 & 4 \end{bmatrix} + \begin{bmatrix} 5 & 5 & 6 & 6 \\ 5 & 5 & 6 & 6 \\ 7 & 7 & 8 & 8 \\ 7 & 7 & 8 & 8 \end{bmatrix} = \begin{bmatrix} 6 & 6 & 8 & 8 \\ 6 & 6 & 8 & 8 \\ 10 & 10 & 12 & 12 \\ 10 & 10 & 12 & 12 \end{bmatrix}$$
(3.19)

$$(\mathbf{X} + \mathbf{Y}) \otimes \mathbf{Z} = \begin{bmatrix} 6 & 8\\ 10 & 12 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1\\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 6 & 8 & 8\\ 6 & 6 & 8 & 8\\ 10 & 10 & 12 & 12\\ 10 & 10 & 12 & 12 \end{bmatrix}$$
(3.20)

3.2.2 矩阵相乘

对于任意矩阵 $X \in \mathbb{R}^{m \times n}$ 、 $Y \in \mathbb{R}^{s \times t}$ 、 $U \in \mathbb{R}^{n \times p} \subseteq V \in \mathbb{R}^{t \times q}$,则矩阵 $X \otimes Y \in \mathbb{R}^{(ms) \times (nt)}$ 的列数 nt与矩阵 $U \otimes V \in \mathbb{R}^{(nt) \times (pq)}$ 的行数 nt 一致,可进行矩阵相乘,两者相乘得到的矩

阵满足:

$$(\mathbf{X} \otimes \mathbf{Y})(\mathbf{U} \otimes \mathbf{V}) = \begin{bmatrix} x_{11}\mathbf{Y} & \cdots & x_{1n}\mathbf{Y} \\ \vdots & \ddots & \vdots \\ x_{m1}\mathbf{Y} & \cdots & x_{mn}\mathbf{Y} \end{bmatrix} \begin{bmatrix} u_{11}\mathbf{V} & \cdots & u_{1p}\mathbf{V} \\ \vdots & \ddots & \vdots \\ u_{n1}\mathbf{V} & \cdots & u_{np}\mathbf{V} \end{bmatrix}$$
$$= \begin{bmatrix} \sum_{k=1}^{n} x_{1k}u_{k1}\mathbf{Y}\mathbf{V} & \cdots & \sum_{k=1}^{n} x_{1k}u_{kp}\mathbf{Y}\mathbf{V} \\ \vdots & \ddots & \vdots \\ \sum_{k=1}^{n} x_{mk}u_{k1}\mathbf{Y}\mathbf{V} & \cdots & \sum_{k=1}^{n} x_{mk}u_{kp}\mathbf{Y}\mathbf{V} \end{bmatrix}$$
(3.21)
$$= \begin{bmatrix} \sum_{k=1}^{n} x_{1k}u_{k1} & \cdots & \sum_{k=1}^{n} x_{1k}u_{kp} \\ \vdots & \ddots & \vdots \\ \sum_{k=1}^{n} x_{mk}u_{k1} & \cdots & \sum_{k=1}^{n} x_{mk}u_{kp} \end{bmatrix} \otimes (\mathbf{Y}\mathbf{V})$$
$$= (\mathbf{X}\mathbf{U}) \otimes (\mathbf{Y}\mathbf{V}) \in \mathbb{R}^{(ms) \times (pq)}$$

例 17 (矩阵的奇异值分解). 给定任意矩阵 $X \in \mathbb{R}^{m \times n}$ 与 $Y \in \mathbb{R}^{p \times q}$,若奇异值分解分别为

$$\boldsymbol{X} = \boldsymbol{W} \boldsymbol{S} \boldsymbol{Q}^{\top} \quad \boldsymbol{Y} = \boldsymbol{U} \boldsymbol{D} \boldsymbol{V}^{\top} \tag{3.22}$$

试证明矩阵 $X \otimes Y$ 的奇异值分解可由矩阵 X = Y 的奇异值分解计算得到,即

$$\boldsymbol{X} \otimes \boldsymbol{Y} = (\boldsymbol{W} \otimes \boldsymbol{U})(\boldsymbol{S} \otimes \boldsymbol{D})(\boldsymbol{Q} \otimes \boldsymbol{V})^{\top}$$
(3.23)

解. 根据 Kronecker 积性质,有

$$X \otimes Y = (WSQ^{\top}) \otimes (UDV^{\top})$$

= $(W \otimes U)((SQ^{\top}) \otimes (DV^{\top}))$
= $(W \otimes U)(S \otimes D)(Q^{\top} \otimes V^{\top})$
= $(W \otimes U)(S \otimes D)(Q \otimes V)^{\top}$
(3.24)

3.2.3 求逆矩阵

对于任意可逆矩阵 $X \in \mathbb{R}^{m \times m}$ 与 $Y \in \mathbb{R}^{n \times n}$,由于

$$(\boldsymbol{X} \otimes \boldsymbol{Y}) \left(\boldsymbol{X}^{-1} \otimes \boldsymbol{Y}^{-1} \right) = \left(\boldsymbol{X} \boldsymbol{X}^{-1} \right) \otimes \left(\boldsymbol{Y} \boldsymbol{Y}^{-1} \right) = \boldsymbol{I}_m \otimes \boldsymbol{I}_n = \boldsymbol{I}_{mn}$$
(3.25)

故有

$$(\boldsymbol{X} \otimes \boldsymbol{Y})^{-1} = \boldsymbol{X}^{-1} \otimes \boldsymbol{Y}^{-1}$$
(3.26)

恒成立。这意味着:若计算 $X \otimes Y$ 的逆矩阵,可先对 X = Y 分别求逆矩阵,再对得到的 逆矩阵进行 Kronecker 积运算。

例 18. 给定矩阵
$$\boldsymbol{X} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 与 $\boldsymbol{Y} = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$, 试写出 $(\boldsymbol{X} \otimes \boldsymbol{Y})^{-1}$ 与 $\boldsymbol{X}^{-1} \otimes \boldsymbol{Y}^{-1}$ 。

解. 根据 Kronecker 积定义,有

$$\boldsymbol{X} \otimes \boldsymbol{Y} = \begin{bmatrix} 5 & 6 & 10 & 12 \\ 7 & 8 & 14 & 16 \\ 15 & 18 & 20 & 24 \\ 21 & 24 & 28 & 32 \end{bmatrix}$$
(3.27)

对该矩阵求逆矩阵,得到

$$(\boldsymbol{X} \otimes \boldsymbol{Y})^{-1} = \begin{bmatrix} 8 & -6 & -4 & 3 \\ -7 & 5 & 3.5 & -2.5 \\ -6 & 4.5 & 2 & -1.5 \\ 5.25 & -3.75 & -1.75 & 1.25 \end{bmatrix}$$
(3.28)

对矩阵 X 与 Y 分别求逆矩阵:

$$\boldsymbol{X}^{-1} = \begin{bmatrix} -2 & 1\\ 1.5 & -0.5 \end{bmatrix} \quad \boldsymbol{Y}^{-1} = \begin{bmatrix} -4 & 3\\ 3.5 & -2.5 \end{bmatrix}$$
(3.29)

再对得到的逆矩阵进行 Kronecker 积运算,有

$$\boldsymbol{X}^{-1} \otimes \boldsymbol{Y}^{-1} = \begin{bmatrix} 8 & -6 & -4 & 3 \\ -7 & 5 & 3.5 & -2.5 \\ -6 & 4.5 & 2 & -1.5 \\ 5.25 & -3.75 & -1.75 & 1.25 \end{bmatrix}$$
(3.30)

对于任意矩阵 $X \in \mathbb{R}^{m \times m}$ 与 $Y \in \mathbb{R}^{p \times q}$,由上述 Kronecker 积性质同样可得到如下性质:

$$(\boldsymbol{X} \otimes \boldsymbol{Y})^{\dagger} = \boldsymbol{X}^{\dagger} \otimes \boldsymbol{Y}^{\dagger}$$
(3.31)

其中, ·[†] 表示伪逆 (Moore-Penrose pseudoinverse)。

3.2.4 向量化

对于任意矩阵 $A \in \mathbb{R}^{m \times n}$ 、 $X \in \mathbb{R}^{n \times p}$ 与 $B \in \mathbb{R}^{p \times q}$, 三者相乘满足:

$$\operatorname{vec}(\boldsymbol{A}\boldsymbol{X}\boldsymbol{B}) = (\boldsymbol{B}^{\top} \otimes \boldsymbol{A})\operatorname{vec}(\boldsymbol{X})$$
 (3.32)

由此,也可得到

$$\begin{cases} \operatorname{vec}(\boldsymbol{A}\boldsymbol{X}) = (\boldsymbol{I}_p \otimes \boldsymbol{A}) \operatorname{vec}(\boldsymbol{X}) \\ \operatorname{vec}(\boldsymbol{X}\boldsymbol{B}) = (\boldsymbol{B}^\top \otimes \boldsymbol{I}_n) \operatorname{vec}(\boldsymbol{X}) \end{cases}$$
(3.33)

例 19. 试证明公式(3.32)。

解.

$$\operatorname{vec}(\boldsymbol{A}\boldsymbol{X}\boldsymbol{B}) = \boldsymbol{A}\boldsymbol{x}_{1}b_{11} + \boldsymbol{A}\boldsymbol{x}_{2}b_{21} + \cdots + \boldsymbol{A}\boldsymbol{x}_{p}b_{p1} \\ + \boldsymbol{A}\boldsymbol{x}_{1}b_{12} + \boldsymbol{A}\boldsymbol{x}_{2}b_{22} + \cdots + \boldsymbol{A}\boldsymbol{x}_{p}b_{p2} \\ + \cdots + \boldsymbol{A}\boldsymbol{x}_{1}b_{1q} + \boldsymbol{A}\boldsymbol{x}_{2}b_{2q} + \cdots + \boldsymbol{A}\boldsymbol{x}_{p}b_{pq} \\ = \begin{bmatrix} \boldsymbol{A}b_{11} & \boldsymbol{A}b_{21} & \cdots & \boldsymbol{A}b_{p1} \\ \boldsymbol{A}b_{12} & \boldsymbol{A}b_{22} & \cdots & \boldsymbol{A}b_{p2} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{A}b_{1q} & \boldsymbol{A}b_{2q} & \cdots & \boldsymbol{A}b_{pq} \end{bmatrix} \begin{bmatrix} \boldsymbol{x}_{1} \\ \boldsymbol{x}_{2} \\ \vdots \\ \boldsymbol{x}_{p} \end{bmatrix}$$
(3.34)
$$= (\boldsymbol{B}^{\top} \otimes \boldsymbol{A})\operatorname{vec}(\boldsymbol{X})$$

其中, $x_1, x_2, \ldots, x_p \in \mathbb{R}^n$ 表示矩阵 X 的列向量。

例 20. 对于任意向量 $x \in \mathbb{R}^n$ 、 $z \in \mathbb{R}^p$ 与矩阵 $Y \in \mathbb{R}^{p \times q}$, 试证明

$$(\boldsymbol{x}^{\top} \otimes \boldsymbol{Y})^{\top} \boldsymbol{z} = ((\boldsymbol{x}\boldsymbol{z}^{\top}) \otimes \boldsymbol{I}_q) \operatorname{vec}(\boldsymbol{Y}^{\top})$$
(3.35)

恒成立。

解. 根据 Kronecker 积性质,有

$$(\boldsymbol{x}^{\top} \otimes \boldsymbol{Y})^{\top} \boldsymbol{z} = (\boldsymbol{x} \otimes \boldsymbol{Y}^{\top}) \boldsymbol{z}$$

$$= \operatorname{vec} (\boldsymbol{Y}^{\top} \boldsymbol{z} \boldsymbol{x}^{\top})$$

$$= \operatorname{vec} (\boldsymbol{I}_{q} \boldsymbol{Y}^{\top} (\boldsymbol{z} \boldsymbol{x}^{\top}))$$

$$= ((\boldsymbol{x} \boldsymbol{z}^{\top}) \otimes \boldsymbol{I}_{q}) \operatorname{vec} (\boldsymbol{Y}^{\top})$$

$$(3.36)$$

例 21. 对于任意矩阵 $A \in \mathbb{R}^{n \times n}$ 、 $x \in \mathbb{R}^n$ 与 $B \in \mathbb{R}^{n \times n}$,试证明三者相乘满足:

$$\operatorname{vec}(\boldsymbol{A}\operatorname{diag}(\boldsymbol{x})\boldsymbol{B}) = (\boldsymbol{B}^{\top} \odot \boldsymbol{A})\boldsymbol{x}$$
(3.37)

解. 根据 Kronecker 积与 Khatri-Rao 积性质,有

$$\operatorname{vec}(\boldsymbol{A}\operatorname{diag}(\boldsymbol{x})\boldsymbol{B}) = (\boldsymbol{B}^{\top} \otimes \boldsymbol{A})\operatorname{vec}(\operatorname{diag}(\boldsymbol{x}))$$
$$= (\boldsymbol{B}^{\top} \odot \boldsymbol{A})\boldsymbol{x}$$
(3.38)

例 22. Sylvester 方程是一种著名的矩阵方程,由英国数学家 James Joseph Sylvester 于 1884 年提出。时至今日, Sylvester 方程已在控制理论中具有极为广泛的应用。具体而言,已知矩 阵 $A \in \mathbb{R}^{m \times m}$ 、 $B \in \mathbb{R}^{n \times n}$ 与 $C \in \mathbb{R}^{m \times n}$,则 Sylvester 方程的一般形式为

$$AX + XB = C \tag{3.39}$$

其中, $X \in \mathbb{R}^{m \times n}$ 为待定参数。试根据 Kronecker 积性质写出 Sylvester 方程的解析解。

解. 首先将 Sylvester 方程写成

$$AXI_n + I_m XB = C ag{3.40}$$

根据 Kronecker 积性质, Sylvester 方程可写成如下形式:

$$(\boldsymbol{I}_n \otimes \boldsymbol{A} + \boldsymbol{B}^\top \otimes \boldsymbol{I}_m) \operatorname{vec}(\boldsymbol{X}) = \operatorname{vec}(\boldsymbol{C})$$
 (3.41)

因此, Sylvester 方程的解析解¹为

$$\operatorname{vec}(\boldsymbol{X}) = \left(\boldsymbol{I}_n \otimes \boldsymbol{A} + \boldsymbol{B}^\top \otimes \boldsymbol{I}_m\right)^{-1} \operatorname{vec}(\boldsymbol{C})$$
 (3.42)

尽管该解析解形式简洁,但复杂度却很高。在实际问题中,往往需要借助更为高效的数值 计算方法(如 Bartels-Stewart 算法)对 Sylvester 方程进行求解。

3.3 Kronecker 积特殊性质

3.3.1 矩阵的迹

在线性代数中,矩阵的迹 (trace) 表示方阵对角线元素之和,数学符号为 tr(·)。对于任意 矩阵 $X \in \mathbb{R}^{m \times m}$ 与 $Y \in \mathbb{R}^{n \times n}$,矩阵 $X \otimes Y$ 的迹等于矩阵 X 的迹乘以矩阵 Y 的迹,即

$$tr(\boldsymbol{X} \otimes \boldsymbol{Y}) = tr(\boldsymbol{X}) \cdot tr(\boldsymbol{Y})$$
(3.43)

恒成立。

例 23. 给定矩阵
$$\boldsymbol{X} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 与 $\boldsymbol{Y} = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$, 试写出 tr(\boldsymbol{X})、tr(\boldsymbol{Y}) 与 tr($\boldsymbol{X} \otimes \boldsymbol{Y}$)。

¹有时候,可定义 Kronecker 和 (Kronecker sum, 数学符号通常为 ⊕) 令 $\mathbf{A} \oplus \mathbf{B}^{\top} = \mathbf{I}_n \otimes \mathbf{A} + \mathbf{B}^{\top} \otimes \mathbf{I}_m$,将该解析解简 记为 vec(\mathbf{X}) = ($\mathbf{A} \oplus \mathbf{B}^{\top}$)⁻¹ vec(\mathbf{C})。

解. 根据定义, 矩阵 X 的迹与矩阵 Y 的迹分别为

$$\operatorname{tr}(\mathbf{X}) = 1 + 4 = 5 \quad \operatorname{tr}(\mathbf{Y}) = 5 + 8 = 13$$
 (3.44)

由于

$$\boldsymbol{X} \otimes \boldsymbol{Y} = \begin{bmatrix} 5 & 6 & 10 & 12 \\ 7 & 8 & 14 & 16 \\ 15 & 18 & 20 & 24 \\ 21 & 24 & 28 & 32 \end{bmatrix}$$
(3.45)

故 tr $(X \otimes Y) = 5 + 8 + 20 + 32 = 65$ 。

在矩阵计算中,矩阵的迹有两条重要性质,给定任意矩阵
 $\pmb{X} \in \mathbb{R}^{m \times n}$ 与 $\pmb{Y} \in \mathbb{R}^{n \times m}$,满足

$$tr(\boldsymbol{A}\boldsymbol{B}) = tr(\boldsymbol{B}\boldsymbol{A}) \tag{3.46}$$

及

$$\operatorname{tr}(\boldsymbol{A}\boldsymbol{B}) = \operatorname{vec}(\boldsymbol{A}^{\top})^{\top}\operatorname{vec}(\boldsymbol{B})$$
(3.47)

例 24. 给定矩阵 $A \in \mathbb{R}^{m \times n}$ 、 $B \in \mathbb{R}^{n \times p}$ 、 $C \in \mathbb{R}^{p \times q}$ 与 $D \in \mathbb{R}^{q \times m}$,试证明

$$tr(\boldsymbol{ABCD}) = vec(\boldsymbol{B})^{\top}(\boldsymbol{C} \otimes \boldsymbol{A}) vec(\boldsymbol{D}^{\top})$$
(3.48)

解. 根据矩阵的迹与 Kronecker 积性质,有

$$tr(\boldsymbol{ABCD}) = tr(\boldsymbol{D}(\boldsymbol{ABC}))$$

= $vec(\boldsymbol{D}^{\top})^{\top} vec(\boldsymbol{ABC})$
= $vec(\boldsymbol{D}^{\top})^{\top} (\boldsymbol{C}^{\top} \otimes \boldsymbol{A}) vec(\boldsymbol{B})$
= $vec(\boldsymbol{B})^{\top} (\boldsymbol{C} \otimes \boldsymbol{A}) vec(\boldsymbol{D}^{\top})$
(3.49)

3.3.2 矩阵的 Frobenius 范数

从定义出发,矩阵的 Frobenius 范数表示矩阵元素的平方和开根号,一般用 $\|\cdot\|_F$ 表示。 对于任意矩阵 $X \in \mathbb{R}^{m \times n}$,其 Frobenius 范数为

$$\|\boldsymbol{X}\|_{F} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij}^{2}}$$
(3.50)

据此定义,给定任意矩阵 $X \in \mathbb{R}^{m \times n}$ 与 $Y \in \mathbb{R}^{p \times q}$,有

$$\|\boldsymbol{X} \otimes \boldsymbol{Y}\|_{F} = \|\boldsymbol{X}\|_{F} \cdot \|\boldsymbol{Y}\|_{F}$$
(3.51)

恒成立。

例 25. 给定矩阵
$$X = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 与 $Y = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$, 试写出 $\|X\|_F$ 、 $\|Y\|_F$ 与 $\|X \otimes Y\|_F$ 。
解. 根据定义,矩阵 X 与 Y 的 *Frobenius* 范数分别为

$$\|\boldsymbol{X}\|_{F} = \sqrt{1^{2} + 2^{2} + 3^{2} + 4^{2}} = \sqrt{30} \quad \|\boldsymbol{Y}\|_{F} = \sqrt{5^{2} + 6^{2} + 7^{2} + 8^{2}} = \sqrt{174}$$
(3.52)

由于

$$\boldsymbol{X} \otimes \boldsymbol{Y} = \begin{bmatrix} 5 & 6 & 10 & 12 \\ 7 & 8 & 14 & 16 \\ 15 & 18 & 20 & 24 \\ 21 & 24 & 28 & 32 \end{bmatrix}$$
(3.53)

故 $\|\boldsymbol{X} \otimes \boldsymbol{Y}\|_F = \sqrt{5220}$ 。

Frobenius 范数这一概念不适用于向量,对于任意向量 $x \in \mathbb{R}^m$,其元素的平方和开根号 是 ℓ_2 范数,即

$$\|\boldsymbol{x}\|_{2} = \sqrt{\sum_{i=1}^{m} x_{i}^{2}}$$
(3.54)

例 26. 给定向量 $x = (1,2)^{\top}$ 与 $y = (3,4)^{\top}$, 试写出 $||x||_2$ 、 $||y||_2$ 与 $||x \otimes y||_2$ 。

解. 根据定义,向量 x 与 y 的 ℓ_2 范数分别为

$$\|\boldsymbol{x}\|_{2} = \sqrt{1^{2} + 2^{2}} = \sqrt{5} \quad \|\boldsymbol{y}\|_{2} = \sqrt{3^{2} + 4^{2}} = 5$$
 (3.55)

由于 $\boldsymbol{x} \otimes \boldsymbol{y} = (3,4,6,8)^{\top}$, 故 $\|\boldsymbol{x} \otimes \boldsymbol{y}\|_2 = \sqrt{3^2 + 4^2 + 6^2 + 8^2} = 5\sqrt{5}$ 。

3.3.3 矩阵的行列式

矩阵的行列式 (determinant) 是线性代数中非常重要的一个概念, 贯穿线性代数的几乎所 有内容, 一般使用符号 det(·) 表示。若给定矩阵 $X \in \mathbb{R}^{m \times m}$ 与 $Y \in \mathbb{R}^{n \times n}$, 则

$$\det(\boldsymbol{X} \otimes \boldsymbol{Y}) = \det(\boldsymbol{X})^n \cdot \det(\boldsymbol{Y})^m$$
(3.56)

恒成立。

例 27. 给定矩阵
$$X = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 与 $Y = \begin{bmatrix} 1 & 3 & 2 \\ 4 & 1 & 3 \\ 2 & 5 & 2 \end{bmatrix}$, 试写出矩阵的行列式 det (X) 、 det (Y) 与

Τ

 $\det(\boldsymbol{X}\otimes \boldsymbol{Y})_{\circ}$

解. 矩阵 X 与 Y 的行列式分别为

$$\det(\mathbf{X}) = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = -2 \quad \det(\mathbf{Y}) = \begin{vmatrix} 1 & 3 & 2 \\ 4 & 1 & 3 \\ 2 & 5 & 2 \end{vmatrix} = 17$$
(3.57)

故 det $(\boldsymbol{X})^3 \cdot \det(\boldsymbol{Y})^2 = -2312$ 。

矩阵 $X \otimes Y$ 的行列式为

$$\det(\boldsymbol{X} \otimes \boldsymbol{Y}) = \begin{vmatrix} 1 & 3 & 2 & 2 & 6 & 4 \\ 4 & 1 & 3 & 8 & 2 & 6 \\ 2 & 5 & 2 & 4 & 10 & 4 \\ 3 & 9 & 6 & 4 & 12 & 8 \\ 12 & 3 & 9 & 16 & 4 & 12 \\ 6 & 15 & 6 & 8 & 20 & 8 \end{vmatrix} = -2312$$
(3.58)

3.3.4 矩阵的秩

矩阵的秩 (rank) 是线性代数中非常重要的一个概念,在信号处理、图像处理等领域中应用广泛,一般使用符号 rank(·) 表示。若给定矩阵 $X \in \mathbb{R}^{m \times n}$ 与 $Y \in \mathbb{R}^{p \times q}$,则

$$\operatorname{rank}(\boldsymbol{X} \otimes \boldsymbol{Y}) = \operatorname{rank}(\boldsymbol{X}) \cdot \operatorname{rank}(\boldsymbol{Y})$$
(3.59)

恒成立。

例 28. 给定矩阵 $X = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ 与 $Y = \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix}$, 试写出 rank(X)、rank(Y) 与 rank(X \otimes Y)。

解. 在这里, rank(**X**) = 1, rank(**Y**) = 2。 由于

$$\boldsymbol{X} \otimes \boldsymbol{Y} = \begin{bmatrix} 5 & 6 & 7 & 10 & 12 & 14 \\ 8 & 9 & 10 & 16 & 18 & 20 \\ 10 & 12 & 14 & 20 & 24 & 28 \\ 16 & 18 & 20 & 32 & 36 & 40 \end{bmatrix}$$
(3.60)

故 rank $(\boldsymbol{X} \otimes \boldsymbol{Y}) = 2$ 。

3.4 朴素 Kronecker 分解

3.4.1 定义

一般而言,给定任意矩阵 $X \in \mathbb{R}^{(mp) \times (nq)}$,若 $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{p \times q}$ 为朴素 Kronecker 分解中的待定参数,则可将分解过程描述为如下优化问题:

$$\min_{\boldsymbol{A},\boldsymbol{B}} \|\boldsymbol{X} - \boldsymbol{A} \otimes \boldsymbol{B}\|_F^2$$
(3.61)

其中,我们建模的目标是寻找最佳的矩阵 A, B 使得损失函数最小化。

为便于理解该优化问题,不妨用一组小矩阵一窥究竟,令m = 3, n = p = q = 2,则此时的目标函数为

$$\|\boldsymbol{X} - \boldsymbol{A} \otimes \boldsymbol{B}\|_{F}^{2} = \left\| \begin{bmatrix} x_{11} & x_{12} & x_{13} & x_{14} \\ x_{21} & x_{22} & x_{23} & x_{24} \\ \hline x_{31} & x_{32} & x_{33} & x_{34} \\ \hline x_{41} & x_{42} & x_{43} & x_{44} \\ \hline x_{51} & x_{52} & x_{53} & x_{54} \\ \hline x_{61} & x_{62} & x_{63} & x_{64} \end{bmatrix} - \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \otimes \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \right\|_{F}^{2}$$
(3.62)

3.4.2 引入 permute 概念

在这里,我们引入 permute 概念是为了对矩阵的维度按照特定规则进行调整,这一做法 最早是由 Van Loan 和 Pitsianis 于 1993 年提出的 [Van Loan and Pitsianis, 1993]。在公 式(3.62)中,首先使用分块矩阵表示矩阵 $X \in \mathbb{R}^{6\times 4}$:

$$\begin{bmatrix} x_{11} & x_{12} & x_{13} & x_{14} \\ x_{21} & x_{22} & x_{23} & x_{24} \\ \hline x_{31} & x_{32} & x_{33} & x_{34} \\ x_{41} & x_{42} & x_{43} & x_{44} \\ \hline x_{51} & x_{52} & x_{53} & x_{54} \\ x_{61} & x_{62} & x_{63} & x_{64} \end{bmatrix} = \begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \\ X_{31} & X_{32} \end{bmatrix}$$
(3.63)

其中,分块矩阵 **X** 拥有 3×2 个分块,即子矩阵,每个子矩阵的大小为 2×2,这些子矩阵 分别写作如下形式:

$$\begin{aligned} \mathbf{X}_{11} &= \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} & \mathbf{X}_{12} &= \begin{bmatrix} x_{13} & x_{14} \\ x_{23} & x_{24} \end{bmatrix} \\ \mathbf{X}_{21} &= \begin{bmatrix} x_{31} & x_{32} \\ x_{41} & x_{42} \end{bmatrix} & \mathbf{X}_{22} &= \begin{bmatrix} x_{33} & x_{34} \\ x_{43} & x_{44} \end{bmatrix} \\ \mathbf{X}_{31} &= \begin{bmatrix} x_{51} & x_{52} \\ x_{61} & x_{62} \end{bmatrix} & \mathbf{X}_{32} &= \begin{bmatrix} x_{53} & x_{54} \\ x_{63} & x_{64} \end{bmatrix} \end{aligned}$$
(3.64)

有了这些子矩阵之后,需要对这些子矩阵进行向量化,得到的向量依次为

$$\operatorname{vec}(\boldsymbol{X}_{11}) = \begin{bmatrix} x_{11} \\ x_{21} \\ x_{12} \\ x_{22} \end{bmatrix} \quad \operatorname{vec}(\boldsymbol{X}_{21}) = \begin{bmatrix} x_{31} \\ x_{41} \\ x_{32} \\ x_{42} \end{bmatrix} \quad \cdots \quad \operatorname{vec}(\boldsymbol{X}_{32}) = \begin{bmatrix} x_{53} \\ x_{63} \\ x_{54} \\ x_{64} \end{bmatrix}$$
(3.65)

最后,使用这些向量构造如下矩阵:

$$\tilde{\boldsymbol{X}} = \begin{bmatrix} \operatorname{vec}(\boldsymbol{X}_{11})^{\mathsf{T}} \\ \operatorname{vec}(\boldsymbol{X}_{21})^{\mathsf{T}} \\ \operatorname{vec}(\boldsymbol{X}_{31})^{\mathsf{T}} \\ \operatorname{vec}(\boldsymbol{X}_{12})^{\mathsf{T}} \\ \operatorname{vec}(\boldsymbol{X}_{22})^{\mathsf{T}} \\ \operatorname{vec}(\boldsymbol{X}_{32})^{\mathsf{T}} \end{bmatrix} \in \mathbb{R}^{6 \times 4}$$
(3.66)

在这里,将矩阵 X 构造成矩阵 \tilde{X} 的过程通常被称为 permute。 由于

$$\operatorname{vec}(\boldsymbol{X}_{11}) = a_{11} \cdot \operatorname{vec}(\boldsymbol{B})$$
$$\operatorname{vec}(\boldsymbol{X}_{21}) = a_{21} \cdot \operatorname{vec}(\boldsymbol{B})$$
$$\vdots \qquad (3.67)$$

 $\operatorname{vec}(\boldsymbol{X}_{32}) = a_{32} \cdot \operatorname{vec}(\boldsymbol{B})$

此时, Kronecker 分解的优化问题可写作如下形式:

$$\underset{\boldsymbol{A},\boldsymbol{B}}{\operatorname{arg\,min}} \|\boldsymbol{X} - \boldsymbol{A} \otimes \boldsymbol{B}\|_{F}^{2} = \underset{\boldsymbol{A},\boldsymbol{B}}{\operatorname{arg\,min}} \|\tilde{\boldsymbol{X}} - \operatorname{vec}(\boldsymbol{A})\operatorname{vec}(\boldsymbol{B})^{\top}\|_{F}^{2}$$
(3.68)

实际上,向量化之后的待定参数 vec(A) 和 vec(B) 构成了一个标准的矩阵分解问题。

3.4.3 求解过程

对于公式(3.61)中 Kronecker 分解的优化问题,可根据 Eckhart-Young 定理对如下优化问题进行求解:

$$\min_{\boldsymbol{A},\boldsymbol{B}} \|\tilde{\boldsymbol{X}} - \operatorname{vec}(\boldsymbol{A})\operatorname{vec}(\boldsymbol{B})^{\top}\|_{F}^{2}$$
(3.69)

若 \tilde{X} 的奇异值分解为 $\tilde{X} = \sum_{r=1}^{\min\{mn, pq\}} \sigma_r \boldsymbol{u}_r \boldsymbol{v}_r^{\top}$,其中,奇异值为 $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_{\min\{mn, pq\}}$,则矩阵 $\boldsymbol{A} = \boldsymbol{B}$ 的最优解为

$$\begin{cases} \operatorname{vec}(\hat{\boldsymbol{A}}) = \sqrt{\sigma_1} \cdot \boldsymbol{u}_1 \\ \operatorname{vec}(\hat{\boldsymbol{B}}) = \sqrt{\sigma_1} \cdot \boldsymbol{v}_1 \end{cases}$$
(3.70)

这里的最优解恰好是秩为1的逼近问题。

例 29. 给定矩阵 $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ 与 $B = \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix}$, 试写出两者之间的 Kronecker 积 X = $A \otimes B$, 并求 Kronecker 分解 $\hat{A}, \hat{B} = \arg \min ||X - A \otimes B||_F^2$ 。

解. 矩阵 A 与 B 之间的 Kronecker 积为

$$\boldsymbol{X} = \boldsymbol{A} \otimes \boldsymbol{B} = \begin{bmatrix} 5 & 6 & 7 & 10 & 12 & 14 \\ 8 & 9 & 10 & 16 & 18 & 20 \\ 15 & 18 & 21 & 20 & 24 & 28 \\ 24 & 27 & 30 & 32 & 36 & 40 \end{bmatrix}$$
(3.71)

令分块矩阵 X 由如下 4 个子矩阵构成:

$$\boldsymbol{X}_{11} = \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} \qquad \boldsymbol{X}_{12} = \begin{bmatrix} 10 & 12 & 14 \\ 16 & 18 & 20 \end{bmatrix}
\boldsymbol{X}_{21} = \begin{bmatrix} 15 & 18 & 21 \\ 24 & 27 & 30 \end{bmatrix} \qquad \boldsymbol{X}_{22} = \begin{bmatrix} 20 & 24 & 28 \\ 32 & 36 & 40 \end{bmatrix}$$
(3.72)

对这些子矩阵分别进行向量化:

对这些子矩阵分别进行向量化:

$$\operatorname{vec}(\boldsymbol{X}_{11}) = \begin{bmatrix} 5\\ 8\\ 6\\ 9\\ 7\\ 10 \end{bmatrix} \quad \operatorname{vec}(\boldsymbol{X}_{21}) = \begin{bmatrix} 15\\ 24\\ 18\\ 27\\ 21\\ 30 \end{bmatrix} \quad \operatorname{vec}(\boldsymbol{X}_{12}) = \begin{bmatrix} 10\\ 16\\ 12\\ 18\\ 14\\ 20 \end{bmatrix} \quad \operatorname{vec}(\boldsymbol{X}_{22}) = \begin{bmatrix} 20\\ 32\\ 24\\ 36\\ 28\\ 40 \end{bmatrix} \quad (3.73)$$

有了这些向量之后,构造如下矩阵:

$$\tilde{\boldsymbol{X}} = \begin{bmatrix} \operatorname{vec}(\boldsymbol{X}_{11})^{\top} \\ \operatorname{vec}(\boldsymbol{X}_{21})^{\top} \\ \operatorname{vec}(\boldsymbol{X}_{12})^{\top} \\ \operatorname{vec}(\boldsymbol{X}_{22})^{\top} \end{bmatrix} = \begin{bmatrix} 5 & 8 & 6 & 9 & 7 & 10 \\ 15 & 24 & 18 & 27 & 21 & 30 \\ 10 & 16 & 12 & 18 & 14 & 20 \\ 20 & 32 & 24 & 36 & 28 & 40 \end{bmatrix}$$
(3.74)

由此, Kronecker 分解的优化问题等价于

$$\hat{\boldsymbol{A}}, \hat{\boldsymbol{B}} = \underset{\boldsymbol{A},\boldsymbol{B}}{\operatorname{arg\,min}} \|\tilde{\boldsymbol{X}} - \operatorname{vec}(\boldsymbol{A})\operatorname{vec}(\boldsymbol{B})^{\top}\|_{F}^{2}$$
(3.75)

对矩阵 \tilde{X} 进行奇异值分解,则矩阵 \hat{A} 与 \hat{B} 分别为

$$\hat{\boldsymbol{A}} = \begin{bmatrix} -1.85471325 & -3.7094265 \\ -5.56413975 & -7.418853 \end{bmatrix}$$

$$\hat{\boldsymbol{B}} = \begin{bmatrix} -2.69583452 & -3.23500142 & -3.77416832 \\ -4.31333523 & -4.85250213 & -5.39166904 \end{bmatrix}$$
(3.76)

在这里,矩阵 \hat{A} 与 \hat{B} 的所有元素均为负数,可将这些元素全部写成相反数。

3.5 广义 Kronecker 分解

形式上说, 给定任意矩阵 $X \in \mathbb{R}^{(mp) \times (nq)}$, 若 $A_r \in \mathbb{R}^{m \times n}, B_r \in \mathbb{R}^{p \times q}, r = 1, 2, ..., R$ 为广义 Kronecker 分解中的待定参数,则可将分解过程描述为如下逼近问题 [Hameed et al.,
2022]:

$$\min_{\{\boldsymbol{A}_r, \boldsymbol{B}_r\}_{r=1}^R} \left\| \boldsymbol{X} - \sum_{r=1}^R \boldsymbol{A}_r \otimes \boldsymbol{B}_r \right\|_F^2$$
(3.77)

其中,我们的建模目标是寻找最佳的矩阵 $\{A_r, B_r\}_{r=1}^R$ 使得损失函数最小化。在这里,参数 数量为 R(mn + pq)。

与朴素 Kronecker 分解类似,可先将广义 Kronecker 分解的逼近问题写作如下形式:

$$\underset{\{\boldsymbol{A}_{r},\boldsymbol{B}_{r}\}_{r=1}^{R}}{\operatorname{arg\,min}} \left\|\boldsymbol{X}-\sum_{r=1}^{R}\boldsymbol{A}_{r}\otimes\boldsymbol{B}_{r}\right\|_{F}^{2} = \underset{\{\boldsymbol{A}_{r},\boldsymbol{B}_{r}\}_{r=1}^{R}}{\operatorname{arg\,min}} \left\|\tilde{\boldsymbol{X}}-\sum_{r=1}^{R}\operatorname{vec}(\boldsymbol{A}_{r})\operatorname{vec}(\boldsymbol{B}_{r})^{\top}\right\|_{F}^{2}$$
(3.78)

其中,矩阵 \tilde{X} 是由矩阵 X 进行 permute 构造得到。

根据 Eckhart-Young 定理对上述优化问题进行求解,若矩阵 \tilde{X} 的奇异值分解为 $\tilde{X} = \sum_{r=1}^{\min\{mn,pq\}} \sigma_r u_r v_r^{\top}$,其中,奇异值为 $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_{\min\{mn,pq\}}$,则矩阵 A_r 和 B_r 的最优解为

$$\begin{cases} \operatorname{vec}(\hat{\boldsymbol{A}}_r) = \sqrt{\sigma_r} \boldsymbol{u}_r \\ \operatorname{vec}(\hat{\boldsymbol{B}}_r) = \sqrt{\sigma_r} \boldsymbol{v}_r \end{cases}$$
(3.79)

例 30. 给定大小为 512×512 的灰度图像,如图 3.1所示,令 $A_r \in \mathbb{R}^{16\times 32}$, $B_r \in \mathbb{R}^{32\times 16}$, $r = 1, 2, \ldots, R$,给定 R = 5, 10, 50, 100,试采用广义 Kronecker 分解重构灰度图像,即

$$\hat{\boldsymbol{X}} = \sum_{r=1}^{R} \boldsymbol{A}_{r} \otimes \boldsymbol{B}_{r}$$
(3.80)

图 3.1: 大熊猫灰度图像

解. 对于广义 Kronecker 分解, 根据公式(3.78)与(3.79), 给定 R = 5, 10, 50, 100,能得到图 7.3所 示的重构结果。当 R = 5 时, 图像压缩率 (参数数量除以观测值数量) 为 $\frac{5\times2}{512}$; 当 R = 100 时, 图像压缩率为 $\frac{100\times2}{512}$; 随着秩 R 增大, 图片重构效果逐渐变好。

3.6 模型参数压缩问题

Kronecker 分解的一个重要用途是压缩模型参数。以多元线性回归 (multivariate linear regression) 为例,给定输入、输出数据为 $\mathcal{D} = \{(\boldsymbol{x}_1, \boldsymbol{y}_1), \cdots, (\boldsymbol{x}_N, \boldsymbol{y}_N)\} \in \mathbb{R}^{nq} \times \mathbb{R}^{mp}, 则多$ 元线性回归的优化问题为

$$\min_{\boldsymbol{W}} \ \frac{1}{2} \sum_{n=1}^{N} \|\boldsymbol{y}_n - \boldsymbol{W} \boldsymbol{x}_n\|_2^2$$
(3.81)

(a) R = 5

(c) R = 50

(d) R = 100

 \diamondsuit

$$\boldsymbol{X} = \begin{bmatrix} | & | \\ \boldsymbol{x}_1 & \cdots & \boldsymbol{x}_N \\ | & | \end{bmatrix} \in \mathbb{R}^{nq \times N}$$
(3.82)

$$\boldsymbol{Y} = \begin{bmatrix} | & | \\ \boldsymbol{y}_1 & \cdots & \boldsymbol{y}_N \\ | & | \end{bmatrix} \in \mathbb{R}^{mp \times N}, \qquad (3.83)$$

则此时多元线性回归的等价优化问题为

$$\min_{\boldsymbol{W}} \ \frac{1}{2} \|\boldsymbol{Y} - \boldsymbol{W}\boldsymbol{X}\|_F^2 \tag{3.84}$$

不妨假设这里的系数矩阵 $W \in \mathbb{R}^{(mp) \times (nq)}$ 存在一个广义 Kronecker 分解,且由 R个成 分构成,则基于广义 Kronecker 分解的多元线性回归可写作如下形式:

$$\min_{\{\boldsymbol{A}_r,\boldsymbol{B}_r\}_{r=1}^R} \frac{1}{2} \left\| \boldsymbol{Y} - \sum_{r=1}^R (\boldsymbol{A}_r \otimes \boldsymbol{B}_r) \boldsymbol{X} \right\|_F^2$$
(3.85)

将优化问题改写为如下形式即可得到一个标准的广义 Kronecker 分解:

$$\min_{\{\boldsymbol{A}_r, \boldsymbol{B}_r\}_{r=1}^R} \frac{1}{2} \left\| \boldsymbol{Y} \boldsymbol{X}^{\dagger} - \sum_{r=1}^R (\boldsymbol{A}_r \otimes \boldsymbol{B}_r) \right\|_F^2$$
(3.86)

从而可根据广义 Kronecker 分解的求解方法对该多元线性回归问题进行求解。

例 31 (矩阵自回归模型²). 对于多维时间序列 (multidimensional time series), 若任意时刻 t 对应的观测数据为矩阵 $X_t \in \mathbb{R}^{M \times N}$,则矩阵自回归的表达式为

$$\boldsymbol{X}_{t} = \boldsymbol{A}\boldsymbol{X}_{t-1}\boldsymbol{B}^{\top} + \boldsymbol{E}_{t}, \ t = 2, 3, \dots, T$$

$$(3.87)$$

其中, $A \in \mathbb{R}^{M \times M}$ 与 $B \in \mathbb{R}^{N \times N}$ 为自回归过程的系数矩阵 (coefficient matrix); 矩阵 $E_t \in \mathbb{R}^{M \times N}$ 为自回归过程的残差矩阵 (residual matrix)。若令 $x_t = \operatorname{vec}(X_t)$ 与 $\epsilon_t = \operatorname{vec}(E_t)$, 试 写出与矩阵自回归等价的向量自回归表达式。

解. 根据 Kronecker 积性质, 矩阵自回归等价于如下向量自回归:

$$\operatorname{vec}(\boldsymbol{X}_{t}) = \operatorname{vec}(\boldsymbol{A}\boldsymbol{X}_{t-1}\boldsymbol{B}^{\top}) + \operatorname{vec}(\boldsymbol{E}_{t})$$
$$= (\boldsymbol{B} \otimes \boldsymbol{A}) \operatorname{vec}(\boldsymbol{X}_{t-1}) + \operatorname{vec}(\boldsymbol{E}_{t})$$
$$\implies \boldsymbol{x}_{t} = (\boldsymbol{B} \otimes \boldsymbol{A})\boldsymbol{x}_{t-1} + \boldsymbol{\epsilon}_{t}$$
(3.88)

在这里,矩阵自回归的待定参数数量为 $M^2 + N^2$,若对观测数据进行向量化且不对系数矩阵进行 Kronecker 分解,则向量自回归的待定参数数量为 $(MN)^2$,容易引发过参数化 (over-parameterization) 问题。

参考资料

 Kathrin Schacke (2013). On the Kronecker Product. https://www.math.uwaterloo. ca/~hwolkowi/henry/reports/kronthesisschaecke04.pdf

2. Are Hjørungnes (2011). Complex-Valued Matrix Derivatives With Applications in Signal Processing and Communications. Cambridge University Press.

²http://www.stat.rutgers.edu/home/rongchen/publications/20JoE_Matrix_AR.pdf

第四章 外积与 CP 张量分解

4.1 向量外积

4.1.1 定义

对于任意向量 $\boldsymbol{x}^{(k)} \in \mathbb{R}^{n_k}, k = 1, 2, \dots, d$, 其外积 (outer product) 可定义为

$$\boldsymbol{\mathcal{Y}} = \boldsymbol{x}^{(1)} \otimes_{\text{outer}} \boldsymbol{x}^{(2)} \otimes_{\text{outer}} \cdots \otimes_{\text{outer}} \boldsymbol{x}^{(d)} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$$
(4.1)

其中,符号 \otimes_{outer} 表示向量外积。在张量 \mathcal{Y} 中,任意第 (i_1, i_2, \ldots, i_d) 个元素为

$$y_{i_1,i_2,\dots,i_d} = \prod_{k=1}^d x_{i_k}^{(k)}$$
(4.2)

其中, $i_k = 1, 2, \dots, n_k, k = 1, 2, \dots, d_{\circ}$

需要注意的是,由于张量 \mathcal{Y} 是由向量外积得到的,故常被称为秩一张量 (rank-one tensor)。 当 d = 3 时,向量外积得到的三阶张量 $\mathcal{Y} = \mathbf{x}^{(1)} \otimes_{\text{outer}} \mathbf{x}^{(2)} \otimes_{\text{outer}} \mathbf{x}^{(3)} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$ 如图4.1所示,在这里,张量 \mathcal{Y} 的任意第 (i_1, i_2, i_3) 个元素为

$$y_{i_1,i_2,i_3} = \prod_{k=1}^3 x_{i_k}^{(k)} \tag{4.3}$$

其中, $i_k = 1, 2, \ldots, n_k, k = 1, 2, 3$ 。

图 4.1: 向量外积得到的三阶张量

当 d = 2 时,向量外积为

$$\boldsymbol{Y} = \boldsymbol{x}^{(1)} \otimes_{\text{outer}} \boldsymbol{x}_{(2)} = \boldsymbol{x}^{(1)} (\boldsymbol{x}^{(2)})^{\top} \in \mathbb{R}^{n_1 \times n_2}$$
(4.4)

在矩阵 Y 中, 任意第 (i, j) 个元素为

$$y_{i,j} = x_i^{(1)} x_j^{(2)} (4.5)$$

其中, $i = 1, 2, \dots, n_1$ 与 $j = 1, 2, \dots, n_2$ 。

例 32. 给定向量 $\boldsymbol{x} = (1,2)^{\top}$ 与 $\boldsymbol{y} = (3,4)^{\top}$, 试写出 $\boldsymbol{x} \otimes_{\text{outer}} \boldsymbol{y}_{\circ}$

解. 根据外积定义,有

$$\boldsymbol{x} \otimes_{\text{outer}} \boldsymbol{y} = \begin{bmatrix} 3 & 4 \\ 6 & 8 \end{bmatrix}$$
 (4.6)

例 33. 给定向量 $a = (1,2)^{\top}$ 、 $b = (3,4,5)^{\top}$ 与 $c = (6,7,8,9)^{\top}$,试写出 $a \otimes_{\text{outer}} b \otimes_{\text{outer}} c$ 。 解. 令 $\mathcal{Y} = a \otimes_{\text{outer}} b \otimes_{\text{outer}} c \in \mathbb{R}^{2 \times 3 \times 4}$,根据外积定义,有

$$\boldsymbol{a} \otimes_{\text{outer}} \boldsymbol{b} = \begin{bmatrix} 3 & 4 & 5 \\ 6 & 8 & 10 \end{bmatrix}$$
(4.7)

由此,可得张量 \mathcal{Y} 的 frontal 切片为

$$\boldsymbol{\mathcal{Y}}_{:,:,1} = (\boldsymbol{a} \otimes_{\text{outer}} \boldsymbol{b}) \cdot c_1 = \begin{bmatrix} 18 & 24 & 30 \\ 36 & 48 & 60 \end{bmatrix} \quad \boldsymbol{\mathcal{Y}}_{:,:,2} = (\boldsymbol{a} \otimes_{\text{outer}} \boldsymbol{b}) \cdot c_2 = \begin{bmatrix} 21 & 28 & 35 \\ 42 & 56 & 70 \end{bmatrix} \\
\boldsymbol{\mathcal{Y}}_{:,:,3} = (\boldsymbol{a} \otimes_{\text{outer}} \boldsymbol{b}) \cdot c_3 = \begin{bmatrix} 24 & 32 & 40 \\ 48 & 64 & 80 \end{bmatrix} \quad \boldsymbol{\mathcal{Y}}_{:,:,4} = (\boldsymbol{a} \otimes_{\text{outer}} \boldsymbol{b}) \cdot c_4 = \begin{bmatrix} 27 & 36 & 45 \\ 54 & 72 & 90 \end{bmatrix}$$
(4.8)

4.1.2 性质

张量矩阵化

根据 Khatri-Rao 积定义与张量矩阵化规则,由向量 $\boldsymbol{x}^{(k)} \in \mathbb{R}^{n_k}, k = 1, 2, ..., d$ 的外积得 到的张量 $\boldsymbol{\mathcal{Y}} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$,其自第 k 维度展开得到的矩阵可写作如下形式:

$$\boldsymbol{Y}_{(k)} = \boldsymbol{x}^{(k)} \otimes_{\text{outer}} (\boldsymbol{x}^{(d)} \odot \cdots \odot \boldsymbol{x}^{(k+1)} \odot \boldsymbol{x}^{(k-1)} \odot \cdots \odot \boldsymbol{x}^{(1)}) = \boldsymbol{x}^{(k)} (\boldsymbol{x}^{(d)} \odot \cdots \odot \boldsymbol{x}^{(k+1)} \odot \boldsymbol{x}^{(k-1)} \odot \cdots \odot \boldsymbol{x}^{(1)})^{\top}$$

$$(4.9)$$

其中, ⊙ 表示 Khatri-Rao 积。

例 34. 给定向量 $a = (1,2)^{\top}$ 、 $b = (3,4,5)^{\top}$ 与 $c = (6,7,8,9)^{\top}$,若 $\mathcal{Y} = a \otimes_{\text{outer}} b \otimes_{\text{outer}} c$, 试写出张量 \mathcal{Y} 的矩阵化形式 $Y_{(1)}$ 、 $Y_{(2)}$ 与 $Y_{(3)}$ 。

解. 根据 Khatri-Rao 积定义,有

$$\begin{cases} \boldsymbol{c} \odot \boldsymbol{b} = (18, 24, 30, 21, 28, 35, 24, 32, 40, 27, 36, 45)^{\top} \\ \boldsymbol{c} \odot \boldsymbol{a} = (6, 12, 7, 14, 8, 16, 9, 18)^{\top} \\ \boldsymbol{b} \odot \boldsymbol{a} = (3, 6, 4, 8, 5, 10)^{\top} \end{cases}$$
(4.10)

从而,可得到

$$\boldsymbol{Y}_{(1)} = \boldsymbol{a}(\boldsymbol{c} \odot \boldsymbol{b})^{\top} = \begin{bmatrix} 18 & 24 & 30 & 21 & 28 & 35 & 24 & 32 & 40 & 27 & 36 & 45 \\ 36 & 48 & 60 & 42 & 56 & 70 & 48 & 64 & 80 & 54 & 72 & 90 \end{bmatrix}$$
(4.11)

$$\boldsymbol{Y}_{(2)} = \boldsymbol{a}(\boldsymbol{c} \odot \boldsymbol{b})^{\top} = \begin{bmatrix} 18 & 36 & 21 & 42 & 24 & 48 & 27 & 54 \\ 24 & 48 & 28 & 56 & 32 & 64 & 36 & 72 \\ 30 & 60 & 35 & 70 & 40 & 80 & 45 & 90 \end{bmatrix}$$
(4.12)
$$\boldsymbol{Y}_{(3)} = \boldsymbol{c}(\boldsymbol{b} \odot \boldsymbol{a})^{\top} = \begin{bmatrix} 18 & 36 & 24 & 48 & 30 & 60 \\ 21 & 42 & 28 & 56 & 35 & 70 \\ 24 & 48 & 32 & 64 & 40 & 80 \\ 27 & 54 & 36 & 72 & 45 & 90 \end{bmatrix}$$
(4.13)

张量向量化

根据 Khatri-Rao 积定义与张量向量化规则,由向量 $\boldsymbol{x}^{(k)} \in \mathbb{R}^{n_k}, k = 1, 2, ..., d$ 的外积得 到的张量 $\boldsymbol{\mathcal{Y}} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$,其自第 k 维度展开得到的矩阵可写作如下形式:

$$\operatorname{vec}(\boldsymbol{\mathcal{Y}}) = \boldsymbol{x}^{(d)} \odot \boldsymbol{x}^{(d-1)} \odot \cdots \odot \boldsymbol{x}^{(2)} \odot \boldsymbol{x}^{(1)}$$

$$(4.14)$$

其中, ⊙ 表示 Khatri-Rao 积; vec(·) 表示向量化操作。

例 35. 给定向量 $a = (1,2)^{\top}$ 、 $b = (3,4,5)^{\top}$ 与 $c = (6,7,8,9)^{\top}$,若 $\mathcal{Y} = a \otimes_{\text{outer}} b \otimes_{\text{outer}} c$, 试写出张量 \mathcal{Y} 的向量化形式 $\text{vec}(\mathcal{Y})$ 。

解. 根据 Khatri-Rao 积定义,有

$$\boldsymbol{c} \odot \boldsymbol{b} = (18, 24, 30, 21, 28, 35, 24, 32, 40, 27, 36, 45)^{\top}$$
(4.15)

从而,可得到

$$\operatorname{vec}(\boldsymbol{\mathcal{Y}}) = \boldsymbol{c} \odot \boldsymbol{b} \odot \boldsymbol{a} = (18, 24, 30, 21, 28, 35, 24, 32, 40, 27, 36, 45, 36, 48, 60, 42, 56, 70, 48, 64, 80, 54, 72, 90)^{\top}$$
(4.16)

4.2.1 CP 分解形式

给定任意张量 $\mathcal{Y} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$, 若令其秩为 R, 则 CP 分解可写作如下形式:

$$\boldsymbol{\mathcal{X}} = \sum_{r=1}^{R} \boldsymbol{u}_{r}^{(1)} \otimes_{\text{outer}} \boldsymbol{u}_{r}^{(2)} \otimes_{\text{outer}} \cdots \otimes_{\text{outer}} \boldsymbol{u}_{r}^{(d)}$$
(4.17)

其中,因子矩阵为

$$\boldsymbol{U}^{(k)} = \begin{bmatrix} | & | & | \\ \boldsymbol{u}_1^{(k)} & \boldsymbol{u}_2^{(k)} & \cdots & \boldsymbol{u}_R^{(k)} \\ | & | & | \end{bmatrix} \in \mathbb{R}^{n_k \times R}, \, k = 1, 2, \dots, d$$
(4.18)

4.2.2 交替最小二乘法

4.2.3 处理缺失数据

CP 分解是一种常用的张量分解形式。

4.3 非负张量分解

第五章 模态积与 Tucker 张量分解

模态积 (modal product) 是张量计算中非常重要的一种运算,用于表示张量与矩阵之间 相乘。基于模态积的运算规则,我们可描述一种非常经典的分解结构,即 Tucker 分解。具体 而言,对于高阶张量,Tucker 分解会将其分解为一个核心张量与一系列因子矩阵,核心张量 与因子矩阵之间便是借助模态积表示张量与矩阵的乘积。本章将首先介绍模态积的定义与性 质,以此为基础,逐步引出高阶奇异值分解与 Tucker 分解,最后讨论另一种经典的张量分解 结构,即 CP 分解。

5.1 模态积定义

在张量计算中,模态积是一种表示张量与矩阵相乘的运算。相比矩阵计算中的矩阵与矩阵间相乘、矩阵与向量间相乘,模态积更为复杂。给定任意张量 $\mathcal{X} \in \mathbb{R}^{m_1 \times m_2 \times \cdots \times m_d}$,阶数为 d,同时给定矩阵 $\mathbf{A} \in \mathbb{R}^{n_k \times m_k}$,则两者之间的模态积可记作 $\mathcal{X} \times_k \mathbf{A}$,其中,乘法符号的下标 k表示以第 k 维度进行相乘,这里模态积得到的张量大小为 $m_1 \times m_2 \times \cdots \times m_{k-1} \times n_k \times m_{k+1} \times \cdots \times m_d$,任意第 $(i_1, i_2, \ldots, i_{k-1}, j, i_{k+1}, \ldots, i_d)$ 个元素为

$$(\boldsymbol{\mathcal{X}} \times_k \boldsymbol{A})_{i_1, i_2, \dots, i_{k-1}, j, i_{k+1}, \dots, i_d} = \sum_{i_k=1}^{m_k} x_{i_1, i_2, \dots, i_{k-1}, i_k, i_{k+1}, \dots, i_d} a_{j, i_k}$$
(5.1)

其中, $i_1 \in \{1, 2, ..., m_1\}, ..., i_d \in \{1, 2, ..., m_d\}, j \in \{1, 2, ..., n_k\}$ 。 对于三阶张量 $\mathcal{X} \in \mathbb{R}^{m \times n \times p}$,可进行如下模态积运算:

• 若矩阵 $A \in \mathbb{R}^{q \times m}$,则模态积为 $\mathcal{X} \times_1 A \in \mathbb{R}^{q \times n \times p}$,任意第 (k, j, h)个元素为

$$(\boldsymbol{\mathcal{X}} \times_1 \boldsymbol{A})_{k,j,h} = \sum_{i=1}^m x_{i,j,h} a_{k,i}$$
(5.2)

• 若矩阵 $A \in \mathbb{R}^{q \times n}$,则模态积为 $\mathcal{X} \times_2 A \in \mathbb{R}^{m \times q \times p}$,任意第 (i, k, h)个元素为

$$(\boldsymbol{\mathcal{X}} \times_2 \boldsymbol{A})_{i,k,h} = \sum_{j=1}^n x_{i,j,h} a_{k,j}$$
(5.3)

• 若矩阵 $A \in \mathbb{R}^{q \times p}$,则模态积为 $\mathcal{X} \times_3 A \in \mathbb{R}^{m \times n \times q}$,任意第(i, j, k)个元素为

$$(\boldsymbol{\mathcal{X}} \times_{3} \boldsymbol{A})_{i,j,k} = \sum_{h=1}^{p} x_{i,j,h} a_{k,h}$$
(5.4)

其中, *i* ∈ {1,2,...,*m*}, *j* ∈ {1,2,...,*n*}, *h* ∈ {1,2,...,*p*}, *k* ∈ {1,2,...,*q*}.

例 36. 给定张量 $\mathcal{X} \in \mathbb{R}^{2 \times 2 \times 2}$,若其 frontal 切片为

$$\boldsymbol{\mathcal{X}}_{:,:,1} = \begin{bmatrix} x_{111} & x_{121} \\ x_{211} & x_{221} \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \qquad \boldsymbol{\mathcal{X}}_{:,:,2} = \begin{bmatrix} x_{112} & x_{122} \\ x_{212} & x_{222} \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$$
(5.5)

若矩阵
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$
,大小为 3×2,试写出张量 \mathcal{X} 与矩阵 A 的模态积 $\mathcal{X} \times_1 A$ 。

解. 张量 \mathcal{X} 与矩阵 A 的模态积 $\mathcal{X} \times_1 A$ 是一个大小为 $3 \times 2 \times 2$ 的张量, 令 $\mathcal{Y} = \mathcal{X} \times_1 A$, 则其 *frontal* 切片上的元素分别为

$$\begin{cases} y_{111} = \sum_{i=1}^{2} x_{i11}a_{1i} = x_{111}a_{11} + x_{211}a_{12} = 1 \times 1 + 3 \times 2 = 7 \\ y_{121} = \sum_{i=1}^{2} x_{i21}a_{1i} = x_{121}a_{11} + x_{221}a_{12} = 2 \times 1 + 4 \times 2 = 10 \\ y_{211} = \sum_{i=1}^{2} x_{i11}a_{2i} = x_{111}a_{21} + x_{211}a_{22} = 1 \times 3 + 3 \times 4 = 15 \\ y_{221} = \sum_{i=1}^{2} x_{i21}a_{2i} = x_{121}a_{21} + x_{221}a_{22} = 2 \times 3 + 4 \times 4 = 22 \\ y_{311} = \sum_{i=1}^{2} x_{i11}a_{3i} = x_{111}a_{31} + x_{211}a_{32} = 1 \times 5 + 3 \times 6 = 23 \\ y_{321} = \sum_{i=1}^{2} x_{i21}a_{3i} = x_{121}a_{31} + x_{221}a_{32} = 2 \times 5 + 4 \times 6 = 34 \end{cases}$$

$$\begin{cases} y_{112} = \sum_{i=1}^{2} x_{i12}a_{1i} = x_{112}a_{11} + x_{212}a_{12} = 5 \times 1 + 7 \times 2 = 19 \\ y_{122} = \sum_{i=1}^{2} x_{i22}a_{1i} = x_{122}a_{11} + x_{222}a_{12} = 6 \times 1 + 8 \times 2 = 22 \\ y_{212} = \sum_{i=1}^{2} x_{i12}a_{2i} = x_{112}a_{21} + x_{212}a_{22} = 5 \times 3 + 7 \times 4 = 43 \\ y_{222} = \sum_{i=1}^{2} x_{i22}a_{2i} = x_{122}a_{21} + x_{222}a_{22} = 6 \times 3 + 8 \times 4 = 50 \\ y_{312} = \sum_{i=1}^{2} x_{i12}a_{3i} = x_{112}a_{31} + x_{212}a_{32} = 5 \times 5 + 7 \times 6 = 67 \\ y_{322} = \sum_{i=1}^{2} x_{i22}a_{3i} = x_{122}a_{31} + x_{222}a_{32} = 6 \times 5 + 8 \times 6 = 78 \end{cases}$$

因此, 张量 $oldsymbol{\mathcal{Y}}$ 的 frontal 切片为

$$\boldsymbol{\mathcal{Y}}_{:,:,1} = \begin{bmatrix} 7 & 10\\ 15 & 22\\ 23 & 34 \end{bmatrix} \qquad \boldsymbol{\mathcal{Y}}_{:,:,2} = \begin{bmatrix} 19 & 22\\ 43 & 50\\ 67 & 78 \end{bmatrix}$$
(5.8)

例 37 (矩阵自回归模型 [Chen et al., 2021]). 对于多维时间序列,若任意时刻 t 对应的观测数 据为矩阵 $X_t \in \mathbb{R}^{M \times N}$, 恰好是张量 $\mathcal{X} \in \mathbb{R}^{M \times N \times T}$ 的第 t 个 frontal 切片,试将矩阵自回归 的表达式写成模态积的形式。在这里,矩阵自回归的表达式为

$$\boldsymbol{X}_{t} = \boldsymbol{A}\boldsymbol{X}_{t-1}\boldsymbol{B}^{\top} + \boldsymbol{E}_{t}, \, t = 2, 3, \dots, T$$
(5.9)

其中, $A \in \mathbb{R}^{M \times M}$ 与 $B \in \mathbb{R}^{N \times N}$ 为自回归过程的系数矩阵; 矩阵 $E_t \in \mathbb{R}^{M \times N}$ 为自回归过程的残差矩阵。

解. 令张量 $\bar{\boldsymbol{\chi}} \in \mathbb{R}^{M \times N \times (T-1)}$ 是由 frontal 切片 { $\boldsymbol{X}_2, \boldsymbol{X}_3, \dots, \boldsymbol{X}_T$ } 构成,张量 $\dot{\boldsymbol{\chi}} \in \mathbb{R}^{M \times N \times (T-1)}$ 是由 frontal 切片 { $\boldsymbol{X}_1, \boldsymbol{X}_2, \dots, \boldsymbol{X}_{T-1}$ } 构成,则

$$\bar{\boldsymbol{\mathcal{X}}} = \dot{\boldsymbol{\mathcal{X}}} \times_1 \boldsymbol{A} \times_2 \boldsymbol{B} + \boldsymbol{\mathcal{E}}$$
(5.10)

其中, $\boldsymbol{\mathcal{E}} \in \mathbb{R}^{M \times N \times (T-1)}$ 为残差张量。

5.2 模态积性质

5.2.1 张量矩阵化

给定任意张量 $\mathcal{X} \in \mathbb{R}^{m_1 \times m_2 \times \cdots \times m_d}$, 阶数为 d, 同时给定矩阵 $\mathbf{A} \in \mathbb{R}^{n_k \times m_k}$, 则两者之间 的模态积 $\mathcal{Y} = \mathcal{X} \times_k \mathbf{A} \in \mathbb{R}^{m_1 \times m_2 \times \cdots \times m_{k-1} \times n_k \times m_{k+1} \times \cdots \times m_d}$ 满足:

$$\boldsymbol{Y}_{(k)} = \boldsymbol{A}\boldsymbol{X}_{(k)} \tag{5.11}$$

其中, $X_{(k)}$ 与 $Y_{(k)}$ 分别是张量 \mathcal{X} 与 \mathcal{X} 自第 k 维度展开的矩阵化形式。

根据模态积定义,对于任意三阶张量 $\mathcal{X} \in \mathbb{R}^{m_1 \times m_2 \times m_3}$,同时给定矩阵 $A \in \mathbb{R}^{n_1 \times m_1}$ 、 $B \in \mathbb{R}^{n_2 \times m_2}$ 与 $C \in \mathbb{R}^{n_3 \times m_3}$,则张量与这些矩阵之间的模态积可写作如下形式:

$$\boldsymbol{\mathcal{Y}} = \boldsymbol{\mathcal{X}} \times_1 \boldsymbol{A} \times_2 \boldsymbol{B} \times_3 \boldsymbol{C} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$$
(5.12)

进一步通过矩阵化操作,满足以下性质:

$$\begin{cases} \boldsymbol{Y}_{(1)} = \boldsymbol{A} \boldsymbol{X}_{(1)} (\boldsymbol{C} \otimes \boldsymbol{B})^{\top} \\ \boldsymbol{Y}_{(2)} = \boldsymbol{B} \boldsymbol{X}_{(2)} (\boldsymbol{C} \otimes \boldsymbol{A})^{\top} \\ \boldsymbol{Y}_{(3)} = \boldsymbol{C} \boldsymbol{X}_{(3)} (\boldsymbol{B} \otimes \boldsymbol{A})^{\top} \end{cases}$$
(5.13)

除了三阶张量,该性质对于任意高阶张量与矩阵之间的模态积均成立。

例 38. 给定张量 $\mathcal{X} \in \mathbb{R}^{2 \times 2 \times 2}$,若其 frontal 切片为

$$\boldsymbol{\mathcal{X}}_{:,:,1} = \begin{bmatrix} x_{111} & x_{121} \\ x_{211} & x_{221} \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \qquad \boldsymbol{\mathcal{X}}_{:,:,2} = \begin{bmatrix} x_{112} & x_{122} \\ x_{212} & x_{222} \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$$
(5.14)

若矩阵 $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$,大小为 3×2,若两者之间的模态积记作 $\mathcal{Y} = \mathcal{X} \times_1 A$,试根据模态积 性质写出 $Y_{(1)} = AX_{(1)}$ 。

解. 根据张量矩阵化规则, 有

$$\boldsymbol{X}_{(1)} = \begin{bmatrix} \boldsymbol{\mathcal{X}}_{:,:,1} & \boldsymbol{\mathcal{X}}_{:,:,2} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 5 & 6 \\ 3 & 4 & 7 & 8 \end{bmatrix}$$
(5.15)

从而,可得到

$$\boldsymbol{Y}_{(1)} = \boldsymbol{A}\boldsymbol{X}_{(1)} = \begin{bmatrix} 1 & 2\\ 3 & 4\\ 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 & 5 & 6\\ 3 & 4 & 7 & 8 \end{bmatrix} = \begin{bmatrix} 7 & 10 & 19 & 22\\ 15 & 22 & 43 & 50\\ 23 & 34 & 67 & 78 \end{bmatrix}$$
(5.16)

例 39 (矩阵自回归模型 [Chen et al., 2021]). 对于多维时间序列,若时间序列的观测数据为一 系列矩阵,即 { $X_1, X_2, ..., X_T$ },令张量 $\hat{X} \in \mathbb{R}^{M \times N \times (T-1)}$ 是由 frontal 切片 { $X_2, X_3, ..., X_T$ } 构成,张量 $\hat{X} \in \mathbb{R}^{M \times N \times (T-1)}$ 是由 frontal 切片 { $X_1, X_2, ..., X_{T-1}$ }构成,则矩阵自回归的 表达式为

$$\bar{\boldsymbol{\mathcal{X}}} = \bar{\boldsymbol{\mathcal{X}}} \times_1 \boldsymbol{A} \times_2 \boldsymbol{B} + \boldsymbol{\mathcal{E}}$$
(5.17)

其中, $A \in \mathbb{R}^{M \times M}$ 与 $B \in \mathbb{R}^{N \times N}$ 为自回归过程的系数矩阵; 张量 $\mathcal{E} \in \mathbb{R}^{M \times N \times (T-1)}$ 为自回 归过程的残差张量。试以第 1 维度将张量展开成矩阵,并写出展开后的表达式。 解. 根据张量矩阵化性质, 矩阵自回归等价于如下形式:

$$\bar{X}_{(1)} = A\dot{X}_{(1)}(I_{T-1} \otimes B)^{\top} + E_{(1)}$$
 (5.18)

其中, $\bar{X}_{(1)}, \dot{X}_{(1)}, E_{(1)} \in \mathbb{R}^{M \times (N(T-1))}$ 分別是张量 $\bar{X}, \dot{X}, \mathcal{E}$ 自第1维度展开得到的矩阵。

在例39中,根据张量矩阵化规则,可得到张量 $\dot{\chi}$ 自第1维度展开得到的矩阵

$$\dot{\boldsymbol{X}}_{(1)} = \begin{bmatrix} \boldsymbol{X}_1 & \boldsymbol{X}_2 & \cdots & \boldsymbol{X}_{T-1} \end{bmatrix} \in \mathbb{R}^{M \times (N(T-1))}$$
(5.19)

为分块矩阵,根据 Kronecker 积性质,有

m

$$\sum_{t=2}^{I} \boldsymbol{A} \boldsymbol{X}_{t-1} \boldsymbol{B}^{\top} = \boldsymbol{A} \dot{\boldsymbol{X}}_{(1)} (\boldsymbol{I}_{T-1} \otimes \boldsymbol{B}^{\top}) = \boldsymbol{A} \dot{\boldsymbol{X}}_{(1)} (\boldsymbol{I}_{T-1} \otimes \boldsymbol{B})^{\top}$$
(5.20)

恒成立。因此,张量矩阵化性质与矩阵计算规则是一致的,Kronecker 积在这里可起到很好的桥梁沟通作用。

5.2.2 张量向量化

给定任意张量 $\mathcal{X} \in \mathbb{R}^{m_1 \times m_2 \times \cdots \times m_d}$, 阶数为 d, 同时给定矩阵 $\mathbf{A} \in \mathbb{R}^{n_k \times m_k}$, 则两者之间 的模态积 $\mathcal{Y} = \mathcal{X} \times_k \mathbf{A} \in \mathbb{R}^{m_1 \times m_2 \times \cdots \times m_{k-1} \times n_k \times m_{k+1} \times \cdots \times m_d}$ 满足:

$$\operatorname{vec}(\boldsymbol{\mathcal{Y}}) = (\boldsymbol{I}_{m_d} \otimes \boldsymbol{I}_{m_{k+1}} \otimes \boldsymbol{A} \otimes \boldsymbol{I}_{m_{k-1}} \otimes \cdots \otimes \boldsymbol{I}_{m_1}) \operatorname{vec}(\boldsymbol{\mathcal{X}})$$
(5.21)

对于任意三阶张量 $\mathcal{X} \in \mathbb{R}^{m_1 \times m_2 \times m_3}$,同时给定矩阵 $A \in \mathbb{R}^{n_1 \times m_1}$ 、 $B \in \mathbb{R}^{n_2 \times m_2}$ 与 $C \in \mathbb{R}^{n_3 \times m_3}$,则张量与这些矩阵之间的模态积可写作如下形式:

$$\boldsymbol{\mathcal{Y}} = \boldsymbol{\mathcal{X}} \times_1 \boldsymbol{A} \times_2 \boldsymbol{B} \times_3 \boldsymbol{C} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$$
(5.22)

进一步通过向量化操作,满足以下性质:

$$\operatorname{vec}(\boldsymbol{\mathcal{Y}}) = (\boldsymbol{C} \otimes \boldsymbol{B} \otimes \boldsymbol{A}) \operatorname{vec}(\boldsymbol{\mathcal{X}})$$
 (5.23)

除了三阶张量,该性质对于任意高阶张量与矩阵之间的模态积均成立。

5.3 高阶奇异值分解

5.4 Tucker 分解

5.4.1 Tucker 分解形式

给定任意张量 $\mathcal{Y} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$, 阶数为 *d*, 若令其多重线性秩 (multi-linear rank) 为 (R_1, R_2, \ldots, R_d), 则 Tucker 分解可写作如下形式:

$$\boldsymbol{\mathcal{Y}} = \boldsymbol{\mathcal{G}} \times_1 \boldsymbol{U}^{(1)} \times_2 \boldsymbol{U}^{(2)} \times_2 \cdots \times_d \boldsymbol{U}^{(d)}$$
(5.24)

其中, $\mathcal{G} \in \mathbb{R}^{R_1 \times R_2 \times \cdots \times R_d}$ 为核心张量 (core tensor); $U^{(k)} \in \mathbb{R}^{n_k \times R_k}, k = 1, 2, \dots, d$ 为因子矩 阵。

5.4.2 交替最小二乘法

5.4.3 处理缺失数据

第六章 低秩线性回归

线性回归是机器学习中的一个基本模型,常用于各类回归问题,其建模思路是采用线性 方程对给定的变量建立线性关系。本章以线性回归模型为基础,将介绍低秩线性回归模型、低 秩自回归模型、时变低秩自回归模型等,这些模型的核心是借助矩阵分解或张量分解对模型 参数进行压缩。

6.1 低秩线性回归

6.2 高维向量自回归。

6.2.1 一阶向量自回归

矩阵分解 流体流动的动态过程预测

6.2.2 高阶向量自回归

使用张量分解刻画高阶向量自回归的系数

6.3 时变低秩向量自回归

6.3.1 模型表达式

向量自回归作为一个经典统计模型,常被用于各种时间序列建模问题中。为了对时间序 列中的时变 (time-varying) 特征进行建模,可引入一种时变向量自回归。给定多元时间序列, 观测数据由向量 $s_1, s_2, \ldots, s_T \in \mathbb{R}^N$ 构成,则时变向量自回归可写作如下形式:

$$\boldsymbol{s}_t = \sum_{k=1}^d \boldsymbol{A}_{t,k} \boldsymbol{s}_{t-k} + \boldsymbol{\epsilon}_t, \ t = d+1, d+2, \dots, T$$
(6.1)

其中,任意时刻 t,系数矩阵为 $A_{t,1}, A_{t,2}, \ldots, A_{t,d} \in \mathbb{R}^{N \times N}$; d 表示自回归过程的阶数 (order)。 若令

$$\boldsymbol{y}_{t} = \boldsymbol{s}_{t} \quad \boldsymbol{z}_{t} = \begin{bmatrix} \boldsymbol{s}_{t-1} \\ \boldsymbol{s}_{t-2} \\ \vdots \\ \boldsymbol{s}_{t-d} \end{bmatrix} \in \mathbb{R}^{dN} \quad \boldsymbol{A}_{t} = \begin{bmatrix} \boldsymbol{A}_{t,1} & \boldsymbol{A}_{t,2} & \cdots & \boldsymbol{A}_{t,d} \end{bmatrix} \in \mathbb{R}^{N \times (dN)}$$
(6.2)

则时变向量自回归的表达式为

$$\boldsymbol{y}_t = \boldsymbol{A}_t \boldsymbol{z}_t + \boldsymbol{\epsilon}_t, \ t = d+1, d+2, \dots, T$$
(6.3)

其中,数据对 (data pair) { y_t , z_t } $_{t=d+1}^T$ 是作为模型的输入,可用于估计待定参数 { A_t } $_{t=d+1}^T$ 。 一般而言,为了估计待定参数,可构造优化问题,优化问题的损失函数为残差平方和,即

$$\min_{\{\boldsymbol{A}_t\}} \frac{1}{2} \sum_{t=d+1}^{T} \|\boldsymbol{y}_t - \boldsymbol{A}_t \boldsymbol{z}_t\|_2^2$$
(6.4)

尽管这个问题是一个凸优化问题,但直接进行参数估计往往会引发过参数化问题,原因 在于时变的系数矩阵拥有 $dN^2(T-d)$ 个参数,会大大超出观测值数量 NT。在这里,不妨 将系数矩阵 $A_{d+1}, A_{d+2}, \ldots, A_T$ 作为张量 A 的 frontal 切片,则系数张量 A 的大小为 $N \times (dN) \times (T-d)$ 。

为了克服过参数化问题,可采用 Tucker 分解对系数张量 A 进行参数压缩 [Chen et al., 2022a], 令多重线性的秩 (multilinear rank) 为 (R, R, R) (简记为秩 R),则张量分解表达式为

$$\boldsymbol{\mathcal{A}} = \boldsymbol{\mathcal{G}} \times_1 \boldsymbol{W} \times_2 \boldsymbol{V} \times_3 \boldsymbol{X}$$
(6.5)

其中, $\boldsymbol{G} \in \mathbb{R}^{R \times R \times R}$ 为核心张量; $\boldsymbol{W} \in \mathbb{R}^{N \times R}$ 、 $\boldsymbol{V} \in \mathbb{R}^{(dN) \times R}$ 与 $\boldsymbol{X} \in \mathbb{R}^{(T-d) \times R}$ 为因子矩阵。 在系数张量 \boldsymbol{A} 中, 任意 *t* 时刻的系数矩阵 \boldsymbol{A}_t 可根据张量分解写作如下形式:

$$\boldsymbol{A}_t = \boldsymbol{\mathcal{G}} \times_1 \boldsymbol{W} \times_2 \boldsymbol{V} \times_3 \boldsymbol{x}_t^{\top}$$
(6.6)

其中, $x_t \in \mathbb{R}^R$ 对应着因子矩阵 X 在 t 时刻的向量。

令矩阵 $G = G_{(1)} \in \mathbb{R}^{R \times R^2}$ 表示张量 G 自第 1 维度展开得到的矩阵,则

$$\boldsymbol{A}_t = \boldsymbol{W}\boldsymbol{G}(\boldsymbol{x}_t^\top \otimes \boldsymbol{V})^\top \tag{6.7}$$

因此,时变低秩向量自回归的优化问题为

$$\min_{\boldsymbol{W},\boldsymbol{G},\boldsymbol{V},\boldsymbol{X}} \frac{1}{2} \sum_{t=d+1}^{T} \left\| \boldsymbol{y}_{t} - \boldsymbol{W}\boldsymbol{G}(\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V})^{\top} \boldsymbol{z}_{t} \right\|_{2}^{2}$$
(6.8)

在这里,待定参数为张量分解的核心张量与因子矩阵。为了估计该优化问题中的待定参数,可采用交替优化算法 (alternating minimization algorithm)。

例 40. 对于时变低秩向量自回归的表达式:

$$\boldsymbol{y}_t = \boldsymbol{W}\boldsymbol{G}(\boldsymbol{x}_t^\top \otimes \boldsymbol{V})^\top \boldsymbol{z}_t + \boldsymbol{\epsilon}_t, \, t = d+1, d+2, \dots, T$$
(6.9)

若令

$$\mathbf{Y} = \begin{bmatrix} | & | & | \\ \mathbf{y}_{d+1} & \mathbf{y}_{d+2} & \cdots & \mathbf{y}_T \\ | & | & | \end{bmatrix} \in \mathbb{R}^{N \times (T-d)}$$
(6.10)

$$\boldsymbol{Z} = \begin{bmatrix} \boldsymbol{z}_{d+1} & \boldsymbol{0} & \cdots & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{z}_{d+2} & \cdots & \boldsymbol{0} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{0} & \boldsymbol{0} & \cdots & \boldsymbol{z}_T \end{bmatrix} \in \mathbb{R}^{(dN(T-d)) \times (T-d)}$$
(6.11)

试写出矩阵形式的表达式。

解. 根据 Kronecker 积性质,矩阵形式的表达式为

$$\boldsymbol{Y} = \boldsymbol{W}\boldsymbol{G}(\boldsymbol{X} \otimes \boldsymbol{V})^{\top}\boldsymbol{Z} + \boldsymbol{E}$$
(6.12)

其中, $E \in \mathbb{R}^{N \times (T-d)}$ 为残差矩阵。

6.3.2 求解过程

交替优化算法是求解矩阵分解与张量分解中非凸优化问题的常用方法,该方法采用迭代 算法,可通过交替更新待估计变量最终达到收敛。在时变低秩向量自回归的优化问题中,可采 用交替优化算法对 {**W**,**G**,**V**,**X**} 进行交替更新,在每次交替更新时,需求解当前变量的最 优解 (如最小二乘解)或近似解。

不妨令优化问题的目标函数为

$$f = \frac{1}{2} \sum_{t=d+1}^{T} \left\| \boldsymbol{y}_t - \boldsymbol{W} \boldsymbol{G} (\boldsymbol{x}_t^{\top} \otimes \boldsymbol{V})^{\top} \boldsymbol{z}_t \right\|_2^2$$
(6.13)

更新变量 W

对于变量 W,假设其他变量已知,则变量 W的最小二乘解为

$$\boldsymbol{W} := \underset{\boldsymbol{W}}{\operatorname{arg\,min}} \quad \frac{1}{2} \sum_{t=d+1}^{T} \left\| \boldsymbol{y}_{t} - \boldsymbol{W} \boldsymbol{G} (\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V})^{\top} \boldsymbol{z}_{t} \right\|_{2}^{2}$$

$$= \left(\sum_{t=d+1}^{T} \boldsymbol{y}_{t} \boldsymbol{z}_{t}^{\top} (\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V}) \boldsymbol{G}^{\top} \right) \left(\sum_{t=d+1}^{T} \boldsymbol{G} (\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V})^{\top} \boldsymbol{z}_{t} \boldsymbol{z}_{t}^{\top} (\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V}) \boldsymbol{G}^{\top} \right)$$

$$(6.14)$$

例 41. 在公式(6.14)中,试写出变量 W 最小二乘解的具体推导过程。

解. 给定目标函数 f, 对变量 W 求偏导数, 有

$$\frac{\partial f}{\partial \boldsymbol{W}} = -\sum_{t=d+1}^{T} (\boldsymbol{y}_{t} - \boldsymbol{W}\boldsymbol{G}(\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V})^{\top} \boldsymbol{z}_{t}) \boldsymbol{z}_{t}^{\top} (\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V}) \boldsymbol{G}^{\top}
= -\sum_{t=d+1}^{T} \boldsymbol{y}_{t} \boldsymbol{z}_{t}^{\top} (\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V}) \boldsymbol{G}^{\top}
+ \sum_{t=d+1}^{T} \boldsymbol{W}\boldsymbol{G}(\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V})^{\top} \boldsymbol{z}_{t} \boldsymbol{z}_{t}^{\top} (\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V}) \boldsymbol{G}^{\top}$$
(6.15)

此时, 令 $\frac{\partial f}{\partial W} = 0$ 即可得到公式(6.14)所示的最小二乘解。

更新变量 G

对于变量 G, 假设其他变量已知, 则变量 G 的最小二乘解为

$$\boldsymbol{G} := \underset{\boldsymbol{G}}{\operatorname{arg\,min}} \quad \frac{1}{2} \sum_{t=d+1}^{T} \left\| \boldsymbol{y}_{t} - \boldsymbol{W} \boldsymbol{G} (\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V})^{\top} \boldsymbol{z}_{t} \right\|_{2}^{2} \\
= \boldsymbol{W}^{\dagger} \Big(\sum_{t=d+1}^{T} \boldsymbol{y}_{t} \boldsymbol{z}_{t}^{\top} (\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V}) \Big) \Big(\sum_{t=d+1}^{T} (\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V})^{\top} \boldsymbol{z}_{t} \boldsymbol{z}_{t}^{\top} (\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V}) \Big)^{-1} \tag{6.16}$$

其中, ·[†] 表示伪逆 (Moore-Penrose pseudoinverse)。

例 42. 在公式(6.16)中,试写出推导变量 G 最小二乘解的具体过程。 **解.** 给定目标函数 f,对变量 G 求偏导数,有

$$\frac{\partial f}{\partial \boldsymbol{G}} = -\sum_{t=d+1}^{T} \boldsymbol{W}^{\top} (\boldsymbol{y}_{t} - \boldsymbol{W} \boldsymbol{G} (\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V})^{\top} \boldsymbol{z}_{t}) \boldsymbol{z}_{t}^{\top} (\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V})$$

$$= -\sum_{t=d+1}^{T} \boldsymbol{W}^{\top} \boldsymbol{y}_{t} \boldsymbol{z}_{t}^{\top} (\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V})$$

$$+ \sum_{t=d+1}^{T} \boldsymbol{W}^{\top} \boldsymbol{W} \boldsymbol{G} (\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V})^{\top} \boldsymbol{z}_{t} \boldsymbol{z}_{t}^{\top} (\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V})$$
(6.17)

此时, 令 $\frac{\partial f}{\partial G} = \mathbf{0}$ 即可得到公式(6.16)所示的最小二乘解。

更新变量 V

对于变量 V, 可将目标函数改写为如下形式:

$$f = \frac{1}{2} \sum_{t=d+1}^{T} \| \boldsymbol{y}_t - \boldsymbol{W} \boldsymbol{G} (\boldsymbol{x}_t^{\top} \otimes \boldsymbol{V})^{\top} \boldsymbol{z}_t \|_2^2$$

$$= \frac{1}{2} \sum_{t=d+1}^{T} \| \boldsymbol{y}_t - \boldsymbol{W} \boldsymbol{G} ((\boldsymbol{x}_t \boldsymbol{z}_t^{\top}) \otimes \boldsymbol{I}_R) \operatorname{vec}(\boldsymbol{V}^{\top}) \|_2^2$$
(6.18)

对变量 $\operatorname{vec}(\boldsymbol{V}^{\mathsf{T}})$ 求偏导数,有

$$\frac{\partial f}{\partial \operatorname{vec}(\boldsymbol{V}^{\top})} = -\sum_{t=d+1}^{T} ((\boldsymbol{z}_{t}\boldsymbol{x}_{t}^{\top}) \otimes \boldsymbol{I}_{R})\boldsymbol{G}^{\top}\boldsymbol{W}^{\top}\boldsymbol{y}_{t} + \sum_{t=d+1}^{T} ((\boldsymbol{z}_{t}\boldsymbol{x}_{t}^{\top}) \otimes \boldsymbol{I}_{R})\boldsymbol{G}^{\top}\boldsymbol{W}^{\top}\boldsymbol{W}\boldsymbol{G}((\boldsymbol{x}_{t}\boldsymbol{z}_{t}^{\top}) \otimes \boldsymbol{I}_{R})\operatorname{vec}(\boldsymbol{V}^{\top})$$

$$\Leftrightarrow \frac{\partial f}{\partial \operatorname{vec}(\boldsymbol{V}^{\top})} = \boldsymbol{0}, \quad \text{M}$$
(6.19)

$$\sum_{t=d+1}^{T} ((\boldsymbol{z}_t \boldsymbol{x}_t^{\top}) \otimes \boldsymbol{I}_R) \boldsymbol{G}^{\top} \boldsymbol{W}^{\top} \boldsymbol{W} \boldsymbol{G} ((\boldsymbol{x}_t \boldsymbol{z}_t^{\top}) \otimes \boldsymbol{I}_R) \operatorname{vec}(\boldsymbol{V}^{\top}) = \sum_{t=d+1}^{T} ((\boldsymbol{z}_t \boldsymbol{x}_t^{\top}) \otimes \boldsymbol{I}_R) \boldsymbol{G}^{\top} \boldsymbol{W}^{\top} \boldsymbol{y}_t \quad (6.20)$$

尽管求解这个线性方程可得到变量 V 的最小二乘解,但由于计算复杂度过高,往往要用 更为高效的近似解代替最小二乘解。为了得到近似解,可采用共轭梯度法对上述线性方程进 行求解。

首先将上述线性方程改写成广义 Sylvester 方程,如下:

$$\sum_{t=d+1}^{T} ((\boldsymbol{z}_t \boldsymbol{x}_t^{\top}) \otimes \boldsymbol{I}_R) \boldsymbol{G}^{\top} \boldsymbol{W}^{\top} \boldsymbol{W} \boldsymbol{G} (\boldsymbol{x}_t^{\top} \otimes \boldsymbol{V})^{\top} \boldsymbol{z}_t = \sum_{t=d+1}^{T} ((\boldsymbol{z}_t \boldsymbol{x}_t^{\top}) \otimes \boldsymbol{I}_R) \boldsymbol{G}^{\top} \boldsymbol{W}^{\top} \boldsymbol{y}_t \qquad (6.21)$$

不妨令

$$\begin{cases} \operatorname{vec}(\boldsymbol{P}_t) \triangleq \boldsymbol{G}^\top \boldsymbol{W}^\top \boldsymbol{W} \boldsymbol{G}(\boldsymbol{x}_t^\top \otimes \boldsymbol{V})^\top \boldsymbol{z}_t \\ \operatorname{vec}(\boldsymbol{Q}_t) \triangleq \boldsymbol{G}^\top \boldsymbol{W}^\top \boldsymbol{y}_t \end{cases}$$
(6.22)

由此,上述广义 Sylvester 方程可写作如下形式:

$$\sum_{t=d+1}^{T} \boldsymbol{z}_t \boldsymbol{x}_t^{\top} \boldsymbol{P}_t^{\top} = \sum_{t=d+1}^{T} \boldsymbol{z}_t \boldsymbol{x}_t^{\top} \boldsymbol{Q}_t^{\top}$$
(6.23)

将该方程左边进行向量,并定义

$$\theta(\boldsymbol{V}) \triangleq \operatorname{vec}\left(\sum_{t=d+1}^{T} \boldsymbol{z}_t \boldsymbol{x}_t^{\top} \boldsymbol{P}_t^{\top}\right) \in \mathbb{R}^{dNR}$$
(6.24)

算法1给出了

更新变量 X

对于变量 X,为了减少计算资源消耗,需对每个时刻的向量 x_t 单独求解,此时,优化问题的目标函数为

$$f = \frac{1}{2} \sum_{t=d+1}^{T} \| \boldsymbol{y}_t - \boldsymbol{W} \boldsymbol{G} (\boldsymbol{x}_t^\top \otimes \boldsymbol{V})^\top \boldsymbol{z}_t \|_2^2$$

$$= \frac{1}{2} \sum_{t=d+1}^{T} \| \boldsymbol{y}_t - \boldsymbol{W} \boldsymbol{G} (\boldsymbol{I}_R \otimes (\boldsymbol{V}^\top \boldsymbol{z}_t)) \boldsymbol{x}_t \|_2^2$$
(6.25)

Algorithm 1 共轭梯度法估计变量 V

Input: Data pair {y_t, z_t}, known variables {W, G, X}, initialized V, and the maximum iteration L̃ (e.g., the default value as L̃ = 5).
Output: Estimated V.

1: Let $\mathcal{R}_v = \mathbf{0}$. 2: for t = d + 1 to T do Compute \boldsymbol{Q}_t with $\operatorname{vec}(\boldsymbol{Q}_t) \triangleq \boldsymbol{G}^\top \boldsymbol{W}^\top \boldsymbol{y}_t$. 3: Take $\mathcal{R}_v + = \boldsymbol{z}_t \boldsymbol{x}_t^\top \boldsymbol{Q}_t^\top$. 4: 5: end for 6: Initialize \boldsymbol{v}_0 by the vectorized \boldsymbol{V} . 7: Compute residual vector $\boldsymbol{r}_0 = \operatorname{vec}(\mathcal{R}_v) - \mathcal{L}_v(\boldsymbol{V})$, and $\boldsymbol{q}_0 = \boldsymbol{r}_0$. 8: for $\ell = 0$ to $\tilde{L} - 1$ do Convert vector \boldsymbol{q}_{ℓ} into matrix \boldsymbol{Q}_{ℓ} . 9: Compute $\alpha_{\ell} = \frac{\boldsymbol{r}_{\ell}^{\top} \boldsymbol{r}_{\ell}}{\boldsymbol{q}_{\ell}^{\top} \mathcal{L}_{v}(\boldsymbol{Q}_{\ell})}.$ 10: 11: Update $\boldsymbol{v}_{\ell+1} = \boldsymbol{v}_{\ell} + \alpha_{\ell} \boldsymbol{q}_{\ell}$. Update $\boldsymbol{r}_{\ell+1} = \boldsymbol{r}_{\ell} - \alpha_{\ell} \mathcal{L}_{v}(\boldsymbol{Q}_{\ell}).$ 12: Compute $\beta_{\ell} = \frac{\boldsymbol{r}_{\ell+1}^{\top} \boldsymbol{r}_{\ell+1}}{\boldsymbol{r}_{\ell}^{\top} \boldsymbol{r}_{\ell}}.$ 13: Update $\boldsymbol{q}_{\ell+1} = \boldsymbol{r}_{\ell+1} + \beta_{\ell} \boldsymbol{q}_{\ell}.$ 14:15: end for 16: Convert vector $\boldsymbol{v}_{ ilde{L}}$ into matrix $\boldsymbol{V}.$

其中,根据 Kronecker 积性质 (参见公式(3.32)),有

$$(\boldsymbol{x}_t \otimes \boldsymbol{V}^{\top}) \boldsymbol{z}_t = \operatorname{vec}(\boldsymbol{V}^{\top} \boldsymbol{z}_t \boldsymbol{x}_t^{\top})$$
$$= \operatorname{vec}((\boldsymbol{V}^{\top} \boldsymbol{z}_t) \boldsymbol{x}_t^{\top} \boldsymbol{I}_R)$$
$$= (\boldsymbol{I}_R \otimes (\boldsymbol{V}^{\top} \boldsymbol{z}_t)) \boldsymbol{x}_t$$
(6.26)

因此,假设其他变量已知,则变量 x_t 的最小二乘解为

$$\boldsymbol{x}_t := \left(\boldsymbol{W} \boldsymbol{G} (\boldsymbol{I}_R \otimes (\boldsymbol{V}^\top \boldsymbol{z}_t)) \right)^{\dagger} \boldsymbol{y}_t$$
(6.27)

6.3.3 算法

6.3.4 案例:时空数据模式挖掘

流体流动的动态过程建模 将不同频率的数据集组合起来

第七章 低秩时序矩阵模型

在实际应用中,我们可获取到各类时间序列数据。为了刻画这些数据隐含的动态模式,时 序建模就显得格外重要。低秩模型(如矩阵分解)可对实际的时间序列数据进行建模,但缺乏 对时序关联特征的刻画,往往存在不足。本章将介绍时序矩阵分解与低秩拉普拉斯卷积模型, 两种模型都具有低秩建模能力与时序建模能力,能较好地用于分析多元时间序列数据。除了 时序建模,本章给出的低秩时序建模思路同样适用于图像复原问题中的空间建模。

7.1 时序矩阵分解

时序矩阵分解是矩阵分解中的一个重要模型,主要用于对时间序列数据进行建模¹。当多 元时间序列数据存在缺失值时,时序矩阵分解中的时序建模技术如向量自回归便会起到不可 忽视的作用。在时序矩阵分解中,矩阵分解可从部分观测数据中学习出低秩模式,而时序建模 则可刻画时序关联特征。

7.1.1 模型表达式

对于多元时间序列,若任意时刻 t 对应的观测数据为向量 $y_t \in \mathbb{R}^N$,则多元时间序列可写作矩阵形式:

$$\mathbf{Y} = \begin{bmatrix} | & | & | \\ \mathbf{y}_1 & \mathbf{y}_2 & \cdots & \mathbf{y}_T \\ | & | & | \end{bmatrix} \in \mathbb{R}^{N \times T}$$
(7.1)

当矩阵中存在缺失值时,可用 Ω 表示被观测元素的索引集合。一般而言,可定义作用于 集合 Ω 上的正交映射 (orthogonal projection) $\mathcal{P}_{\Omega} : \mathbb{R}^{N \times T} \to \mathbb{R}^{N \times T}$,对于矩阵 **Y** 任意第 (*i*,*t*) 个元素,有

$$[\mathcal{P}_{\Omega}(\boldsymbol{Y})]_{i,t} = \begin{cases} \boldsymbol{y}_{i,t} & \text{if } (i,t) \in \Omega\\ 0 & \text{otherwise} \end{cases}$$
(7.2)

同时,可定义作用于集合 Ω 补集上的正交映射 $\mathcal{P}_{\Omega}^{\perp}: \mathbb{R}^{N \times T} \to \mathbb{R}^{N \times T}$.

通常来说,对于矩阵 Y,矩阵分解的优化问题为

$$\min_{\boldsymbol{W},\boldsymbol{X}} \frac{1}{2} \left\| \mathcal{P}_{\Omega}(\boldsymbol{Y} - \boldsymbol{W}^{\top}\boldsymbol{X}) \right\|_{F}^{2} + \frac{\rho}{2} \left(\|\boldsymbol{W}\|_{F}^{2} + \|\boldsymbol{X}\|_{F}^{2} \right)$$
(7.3)

其中, $W \in \mathbb{R}^{R \times N}$ 与 $X \in \mathbb{R}^{R \times T}$ 为因子矩阵,由于 X 对应着时间维度,也被称为时序因子 矩阵; ρ 为正则项的权重系数。

¹Xinyu Chen, Chengyuan Zhang, Xi-Le Zhao, Nicolas Saunier, Lijun Sun (2022). Nonstationary Temporal Matrix Factorization for Multivariate Time Series Forecasting. arXiv preprint arXiv:2203.10651.

在该矩阵分解的优化问题中,可通过增加向量自回归过程使得模型具备时序建模能力。不 妨对时序因子矩阵构造向量自回归过程,可得到时序矩阵分解的优化问题为

$$\min_{\boldsymbol{W},\boldsymbol{X},\{\boldsymbol{A}_{k}\}} \frac{1}{2} \left\| \mathcal{P}_{\Omega}(\boldsymbol{Y} - \boldsymbol{W}^{\top}\boldsymbol{X}) \right\|_{F}^{2} + \frac{\rho}{2} \left(\|\boldsymbol{W}\|_{F}^{2} + \|\boldsymbol{X}\|_{F}^{2} \right) + \frac{\lambda}{2} \sum_{t=d+1}^{T} \left\| \boldsymbol{x}_{t} - \sum_{k=1}^{d} \boldsymbol{A}_{k} \boldsymbol{x}_{t-k} \right\|_{2}^{2}$$
(7.4)

其中, $A_1, A_2, \ldots, A_d \in \mathbb{R}^{R \times R}$ 为向量自回归过程的系数矩阵; λ 为正则项的权重系数。 根据例6中给出的向量自回归形式,则时序矩阵分解的优化问题可写作如下形式:

$$\min_{\boldsymbol{W},\boldsymbol{X},\{\boldsymbol{A}_k\}} \frac{1}{2} \left\| \mathcal{P}_{\Omega}(\boldsymbol{Y} - \boldsymbol{W}^{\top}\boldsymbol{X}) \right\|_{F}^{2} + \frac{\rho}{2} \left(\|\boldsymbol{W}\|_{F}^{2} + \|\boldsymbol{X}\|_{F}^{2} \right) + \frac{\lambda}{2} \left\| \boldsymbol{X}\boldsymbol{\Psi}_{0}^{\top} - \sum_{k=1}^{d} \boldsymbol{A}_{k} \boldsymbol{X}\boldsymbol{\Psi}_{k}^{\top} \right\|_{F}^{2}$$
(7.5)

其中, $\Psi_k \in \mathbb{R}^{(T-d) \times T}$, $k = 0, 1, \dots, d$ 为构造出来的矩阵 (参见公式(1.32))。

7.1.2 求解过程

为了估计优化问题中的待定参数,即变量 W、X 以及 A_1, A_2, \ldots, A_d ,可采用交替优化 算法 (alternating minimization algorithm)。交替优化算法(如交替最小二乘法)是求解矩阵 分解中非凸优化问题的常用方法,该方法采用迭代算法,可通过交替更新带估计变量最终达 到收敛。在时序矩阵分解中,每次更新特定变量时,可令其他变量固定不变,仅求解当前变量 的最优解(如最小二乘解)或近似解。

更新变量 W

不妨将时序矩阵分解优化问题的目标函数记作 f,对变量 W 求偏导数,有

$$\frac{\partial f}{\partial \boldsymbol{W}} = -\boldsymbol{X} \mathcal{P}_{\Omega}^{\top} (\boldsymbol{Y} - \boldsymbol{W}^{\top} \boldsymbol{X}) + \rho \boldsymbol{W}$$
(7.6)

此时, 令 $\frac{\partial f}{\partial \mathbf{W}} = \mathbf{0}$, 则矩阵方程为

$$\boldsymbol{X} \mathcal{P}_{\Omega}^{\top} (\boldsymbol{W}^{\top} \boldsymbol{X}) + \rho \boldsymbol{W} = \boldsymbol{X} \mathcal{P}_{\Omega}^{\top} (\boldsymbol{Y})$$
(7.7)

对于变量 W, 该矩阵方程的最小二乘解为

$$\boldsymbol{w}_{i} = \left(\sum_{t:(i,t)\in\Omega} \boldsymbol{x}_{t}\boldsymbol{x}_{t}^{\mathsf{T}} + \rho \boldsymbol{I}_{R}\right)^{-1} \sum_{t:(i,t)\in\Omega} \boldsymbol{x}_{t} y_{i,t}$$
(7.8)

其中, i = 1, 2, ..., N; 符号 $\sum_{t:(i,t)\in\Omega}$ 表示固定索引 i 后对索引集合 Ω 内所有索引 t 进行求和。

更新变量 X

令 $A_0 = -I_R$,则时序矩阵分解优化问题的目标函数可写作如下形式:

$$f = \frac{1}{2} \left\| \mathcal{P}_{\Omega} (\boldsymbol{Y} - \boldsymbol{W}^{\top} \boldsymbol{X}) \right\|_{F}^{2} + \frac{\rho}{2} \left(\|\boldsymbol{W}\|_{F}^{2} + \|\boldsymbol{X}\|_{F}^{2} \right) + \frac{\lambda}{2} \left\| \sum_{k=0}^{d} \boldsymbol{A}_{k} \boldsymbol{X} \boldsymbol{\Psi}_{k}^{\top} \right\|_{F}^{2}$$
(7.9)

对变量 X 求偏导数,有

$$\frac{\partial f}{\partial \boldsymbol{X}} = -\boldsymbol{W}\mathcal{P}_{\Omega}(\boldsymbol{Y} - \boldsymbol{W}^{\top}\boldsymbol{X}) + \rho\boldsymbol{X} + \lambda \sum_{k=0}^{d} \boldsymbol{A}_{k}^{\top} \left(\sum_{h=0}^{d} \boldsymbol{A}_{h}\boldsymbol{X}\boldsymbol{\Psi}_{h}^{\top}\right) \boldsymbol{\Psi}_{k}$$
(7.10)

此时, 令 $\frac{\partial f}{\partial X} = 0$, 关于变量 X 的矩阵方程为

$$\boldsymbol{W}\mathcal{P}_{\Omega}(\boldsymbol{W}^{\top}\boldsymbol{X}) + \rho\boldsymbol{X} + \lambda \sum_{k=0}^{d} \boldsymbol{A}_{k}^{\top} \left(\sum_{h=0}^{d} \boldsymbol{A}_{h} \boldsymbol{X} \boldsymbol{\Psi}_{h}^{\top}\right) \boldsymbol{\Psi}_{k} = \boldsymbol{W}\mathcal{P}_{\Omega}(\boldsymbol{Y})$$
(7.11)

例 43. 试写出求解公式(7.11)所示矩阵方程的共轭梯度算法。

更新系数矩阵 A_1, A_2, \ldots, A_d

根据例13, 若令

$$\boldsymbol{A} = \begin{bmatrix} \boldsymbol{A}_1 & \boldsymbol{A}_2 & \cdots & \boldsymbol{A}_d \end{bmatrix} \in \mathbb{R}^{R \times (dR)}$$
$$\boldsymbol{\Psi} = \begin{bmatrix} \boldsymbol{\Psi}_1 & \boldsymbol{\Psi}_2 & \cdots & \boldsymbol{\Psi}_d \end{bmatrix} \in \mathbb{R}^{(T-d) \times (dT)}$$
(7.12)

则对于系数矩阵 A 的子问题为

$$\min_{\boldsymbol{A}} \ \frac{1}{2} \| \boldsymbol{X} \boldsymbol{\Psi}_0^{\top} - \boldsymbol{A} (\boldsymbol{I}_d \otimes \boldsymbol{X}) \boldsymbol{\Psi}^{\top} \|_F^2$$
(7.13)

因此,系数矩阵 A 的最小二乘解为

$$\boldsymbol{A} = \boldsymbol{X} \boldsymbol{\Psi}_0^\top \left((\boldsymbol{I}_d \otimes \boldsymbol{X}) \boldsymbol{\Psi}^\top \right)^\top$$
(7.14)

算法

算法2给出了时序矩阵分解算法的具体实现过程。在这里,不妨使用共轭梯度法对变量 W 与 X 进行求解。

Algorithm 2 时序矩阵分解算法

Input: 观测矩阵 $Y \in \mathbb{R}^{M \times N}$, 被观测元素的索引集合 Ω , 向量自回归的阶数 d, 超参数 { ρ , λ }。 **Output:** 重构出来的矩阵 $\hat{Y} \in \mathbb{R}^{M \times N}$ 。

1: 对变量 {**W**, **X**, **A**} 进行初始化;

- 2: for i = 0 to 最大迭代次数 do
- 3: 使用共轭梯度法对公式(7.7)中的变量 W 进行求解;
- 4: 使用共轭梯度法对公式(7.11)中的变量 X 进行求解;
- 5: 根据公式(7.14)计算系数矩阵 A;
- 6: 计算 $\hat{Y} = W^{\top} X$;
- 7: end for

7.1.3 时间序列预测

为直观展现时序矩阵分解的时间序列预测,考虑流体流动的动态过程 (fluid flow dynamics) 作为测试对象。Cylinder wake 数据集是动态系统分析中一个经典数据集²,它描述了流 体流动的动态过程。在代数结构上,数据集是一个三阶张量,大小为 199×449×150,其中, 199×449 表示空间大小,150 对应着 150 个时刻。图7.1展示了流体在部分时刻的空间状态。

在时间序列预测实验中,首先,将数据集的三阶张量结构转换成矩阵结构,大小为 89351×150;然后,随机抽取 50% 的观测值作为缺失值;最后,使用时序矩阵分解算法对最后三个时刻的空间状态进行预测。在时序矩阵分解模型中,模型的秩为 *R* = 10,流体动态过程预测结果如图7.2所示,从中不难看出,时序矩阵分解的预测值与真实值较为吻合。

7.1.4 延伸内容:基于矩阵分解的图像复原

考虑平滑处理的矩阵分解

给定灰度图像数据 $Y \in \mathbb{R}^{M \times N}$,若矩阵 Y存在缺失值,令 Ω 表示被观测元素的索引集合,则可采用如下形式的矩阵分解³进行图像复原:

$$\min_{\boldsymbol{W},\boldsymbol{X}} \frac{1}{2} \| \mathcal{P}_{\Omega}(\boldsymbol{Y} - \boldsymbol{W}^{\top}\boldsymbol{X}) \|_{F}^{2} + \frac{\rho}{2} (\| \boldsymbol{W} \|_{F}^{2} + \| \boldsymbol{X} \|_{F}^{2}) + \frac{\lambda}{2} (\| \boldsymbol{W} \boldsymbol{\Psi}_{1}^{\top} \|_{F}^{2} + \| \boldsymbol{X} \boldsymbol{\Psi}_{2}^{\top} \|_{F}^{2})$$
(7.15)

²数据集来源于http://dmdbook.com/。

³当 $\lambda = 0$ 时,则考虑平滑处理的矩阵分解变为标准的矩阵分解。

图 7.1: Cylinder wake 数据集在时刻 $t = 5, 10, \ldots, 40$ 的空间状态

图 7.2: 基于时序矩阵分解的流体动态过程预测

其中,目标函数的最后两项为平滑正则项 (smoothing regularization),用于平滑处理的矩阵为

$$\Psi_{1} = \begin{bmatrix} \mathbf{0}_{M \times 1} & \mathbf{I}_{M-1} \end{bmatrix} - \begin{bmatrix} \mathbf{I}_{M-1} & \mathbf{0}_{M \times 1} \end{bmatrix} \in \mathbb{R}^{(M-1) \times M}$$

$$\Psi_{2} = \begin{bmatrix} \mathbf{0}_{N \times 1} & \mathbf{I}_{N-1} \end{bmatrix} - \begin{bmatrix} \mathbf{I}_{N-1} & \mathbf{0}_{N \times 1} \end{bmatrix} \in \mathbb{R}^{(N-1) \times N}$$
(7.16)

在目标函数中,分别对变量 W = X 求偏导数并令偏导数为 0,则得到的广义 Sylvester 方程分别为

$$\boldsymbol{X} \mathcal{P}_{\Omega}(\boldsymbol{W}^{\top} \boldsymbol{X}) + \rho \boldsymbol{W} + \lambda \boldsymbol{W} \boldsymbol{\Psi}_{1}^{\top} \boldsymbol{\Psi}_{1} = \boldsymbol{X} \mathcal{P}_{\Omega}^{\top}(\boldsymbol{Y})$$
(7.17)

$$\boldsymbol{W} \boldsymbol{\mathcal{P}}_{\Omega}^{\top} (\boldsymbol{W}^{\top} \boldsymbol{X}) + \rho \boldsymbol{X} + \lambda \boldsymbol{X} \boldsymbol{\Psi}_{2}^{\top} \boldsymbol{\Psi}_{2} = \boldsymbol{W} \boldsymbol{\mathcal{P}}_{\Omega} (\boldsymbol{Y})$$
(7.18)

算法3给出了考虑平滑处理的矩阵分解算法的具体实现过程。

Algorithm 3 考虑平滑处理的矩阵分解算法 Input: 观测矩阵 $Y \in \mathbb{R}^{M \times N}$, 被观测元素的索引集合 Ω , 超参数 { ρ , λ }。 Output: 重构出来的矩阵 $\hat{Y} \in \mathbb{R}^{M \times N}$ 。 1: 对变量 {W, X} 进行初始化; 2: for i = 0 to 最大迭代次数 do 3: 使用共轭梯度法对公式(7.17)中的变量 W 进行求解; 4: 使用共轭梯度法对公式(7.18)中的变量 X 进行求解; 5: 计算 $\hat{Y} = W^{\top}X$; 6: end for

为了评估图像复原效果,采用相对平方误差 (relative squared errors, RSE) 作为性能指标,即

$$RSE = \frac{\|\hat{\boldsymbol{y}} - \boldsymbol{y}\|_2}{\|\boldsymbol{y}\|_2}$$
(7.19)

其中, $y 与 \hat{y}$ 分别表示真实值与估计值。为统一表述,可对图像复原的估计值与真实值进行 向量化操作,然后计算性能指标 RSE。

例 44. 给定灰度图像数据 $Y \in \mathbb{R}^{M \times N}$,若矩阵 Y 存在缺失值,对该矩阵进行向量化 y =vec(Y),令 Ω 表示被观测元素的索引集合,试使用考虑平滑处理的矩阵分解算法对如图 7.3(b)所示的灰度图像进行复原,其中,分别测试矩阵分解的秩设为 R = 5, 10, 50。

(a) 完整灰度图像

(b) 90% 缺失率的灰度图像

图 7.3: 大熊猫灰度图像及其随机生成的不完整图像

解. 在如图 7.4所示的灰度图像复原实验中,将矩阵分解算法的超参数设置为 $\rho = 10^{-1}$ 。直观 上来看,考虑平滑处理的矩阵分解算法 (即 $\lambda = 10$)的图像复原效果会远远优于标准的矩阵 分解 (即 $\lambda = 10^{-10} \rightarrow 0$,旨在弱化平滑正则项的作用)。

考虑空间自回归的矩阵分解

给定灰度图像数据 $Y \in \mathbb{R}^{M \times N}$,若矩阵 Y 存在缺失值,令 Ω 表示被观测元素的索引集合,则可将空间自回归融入到矩阵模型中,进而对图像进行修复:

$$\min_{\boldsymbol{W},\boldsymbol{X},\boldsymbol{A}_{w},\boldsymbol{A}_{x}} \frac{1}{2} \| \mathcal{P}_{\Omega}(\boldsymbol{Y} - \boldsymbol{W}^{\top}\boldsymbol{X}) \|_{F}^{2} + \frac{\rho}{2} (\| \boldsymbol{W} \|_{F}^{2} + \| \boldsymbol{X} \|_{F}^{2})
+ \frac{\lambda}{2} \left(\| \boldsymbol{W} \boldsymbol{\Phi}_{0}^{\top} - \boldsymbol{A}_{w} \boldsymbol{W} \boldsymbol{\Phi}_{1}^{\top} \|_{F}^{2} + \| \boldsymbol{X} \boldsymbol{\Psi}_{0}^{\top} - \boldsymbol{A}_{x} \boldsymbol{X} \boldsymbol{\Psi}_{1}^{\top} \|_{F}^{2} \right)$$
(7.20)

(a) RSE = 25.11% ($R = 5, \lambda = 10$)

(b) RSE = 27.85% ($R = 5, \lambda = 10^{-10}$)

(c) RSE = 18.94% $(R = 10, \lambda = 10)$

(d) RSE = 26.52% ($R = 10, \lambda = 10^{-10}$)

(e) RSE = 13.18% ($R = 50, \lambda = 10$)

(f) RSE = 28.20% ($R = 50, \lambda = 10^{-10}$)

图 7.4: 基于空间平滑与矩阵分解的 90% 缺失率的灰度图像复原

其中, $A_w, A_x \in \mathbb{R}^{R \times R}$ 为空间自回归的系数矩阵;定义矩阵

$$\begin{cases} \boldsymbol{\Phi}_{0} = \begin{bmatrix} \boldsymbol{0}_{(M-1)\times 1} & \boldsymbol{I}_{M-1} \end{bmatrix} \in \mathbb{R}^{(M-1)\times M} \\ \boldsymbol{\Phi}_{1} = \begin{bmatrix} \boldsymbol{I}_{M-1} & \boldsymbol{0}_{(M-1)\times 1} \end{bmatrix} \in \mathbb{R}^{(M-1)\times M} \end{cases}$$
(7.21)

$$\begin{cases} \boldsymbol{\Psi}_{0} = \begin{bmatrix} \boldsymbol{0}_{(N-1)\times 1} & \boldsymbol{I}_{N-1} \end{bmatrix} \in \mathbb{R}^{(N-1)\times N} \\ \boldsymbol{\Psi}_{1} = \begin{bmatrix} \boldsymbol{I}_{N-1} & \boldsymbol{0}_{(N-1)\times 1} \end{bmatrix} \in \mathbb{R}^{(N-1)\times N} \end{cases}$$
(7.22)

令优化问题的目标函数为 f, 对变量 W 求偏导数, 有

$$\frac{\partial f}{\partial \boldsymbol{W}} = -\boldsymbol{X} \mathcal{P}_{\Omega}^{\top} (\boldsymbol{Y} - \boldsymbol{W}^{\top} \boldsymbol{X}) + \rho \boldsymbol{W} + \lambda (\boldsymbol{W} \boldsymbol{\Phi}_{0}^{\top} - \boldsymbol{A}_{w} \boldsymbol{W} \boldsymbol{\Phi}_{1}^{\top}) \boldsymbol{\Phi}_{0} - \lambda \boldsymbol{A}_{w}^{\top} (\boldsymbol{W} \boldsymbol{\Phi}_{0}^{\top} - \boldsymbol{A}_{w} \boldsymbol{W} \boldsymbol{\Phi}_{1}^{\top}) \boldsymbol{\Phi}_{1}$$
(7.23)

令 $\frac{\partial f}{\partial W} = 0$, 则关于变量 W 的矩阵方程为

$$\boldsymbol{X} \mathcal{P}_{\Omega}^{\top} (\boldsymbol{W}^{\top} \boldsymbol{X}) + \rho \boldsymbol{W}$$

+ $\lambda (\boldsymbol{W} \boldsymbol{\Phi}_{0}^{\top} - \boldsymbol{A}_{w} \boldsymbol{W} \boldsymbol{\Phi}_{1}^{\top}) \boldsymbol{\Phi}_{0}$
- $\lambda \boldsymbol{A}_{w}^{\top} (\boldsymbol{W} \boldsymbol{\Phi}_{0}^{\top} - \boldsymbol{A}_{w} \boldsymbol{W} \boldsymbol{\Phi}_{1}^{\top}) \boldsymbol{\Phi}_{1} = \boldsymbol{X} \mathcal{P}_{\Omega}^{\top} (\boldsymbol{Y})$ (7.24)

同理, 令 $\frac{\partial f}{\partial X} = 0$, 则关于变量 X 的矩阵方程为

$$W\mathcal{P}_{\Omega}(W^{\top}X) + \rho X$$

+ $\lambda (X\Psi_{0}^{\top} - A_{x}X\Psi_{1}^{\top})\Psi_{0}$
- $\lambda A_{x}^{\top} (X\Psi_{0}^{\top} - A_{x}X\Psi_{1}^{\top})\Psi_{1} = W\mathcal{P}_{\Omega}(Y)$ (7.25)

系数矩阵 A_w 与 A_x 的最小二乘解分别为

$$\boldsymbol{A}_{w} = \boldsymbol{W}\boldsymbol{\Phi}_{0}^{\top}(\boldsymbol{W}\boldsymbol{\Phi}_{1}^{\top})^{\dagger} \qquad \boldsymbol{A}_{x} = \boldsymbol{X}\boldsymbol{\Psi}_{0}^{\top}(\boldsymbol{X}\boldsymbol{\Psi}_{1}^{\top})^{\dagger}$$
(7.26)

算法4给出了考虑空间自回归的矩阵分解算法的具体实现过程。

 Algorithm 4 考虑空间自回归的矩阵分解算法

 Input: 观测矩阵 $Y \in \mathbb{R}^{M \times N}$, 被观测元素的索引集合 Ω, 超参数 { ρ, λ }。

 Output: 重构出来的矩阵 $\hat{Y} \in \mathbb{R}^{M \times N}$ 。

 1: 对变量 { W, X, A_w, A_x } 进行初始化;

 2: for i = 0 to 最大迭代次数 do

 3: 使用共轭梯度法对公式(7.24)中的变量 W 进行求解;

 4: 使用共轭梯度法对公式(7.25)中的变量 X 进行求解;

 5: 根据公式(7.26)计算系数矩阵 $A_w \models A_x$;

 6: 计算 $\hat{Y} = W^T X$;

7: end for

例 45. 给定灰度图像数据 $Y \in \mathbb{R}^{M \times N}$,若矩阵 Y 存在缺失值,对该矩阵进行向量化 y =vec(Y),令 Ω 表示被观测元素的索引集合,试使用考虑空间自回归的矩阵分解算法对如 图 7.3(b)所示的灰度图像进行复原,其中,分别测试矩阵分解的秩设为 R = 5, 10, 50。

解. 在如图7.5所示的灰度图像复原实验中,将矩阵分解算法的超参数设置为 $\rho = 10^{-1}, \lambda = 5 \times 10^{-1}$ 。直观上来看,考虑空间自回归的矩阵分解算法的图像复原效果会远远优于标准的矩阵分解 (见图7.4)。

(a) RSE = 26.45% (R = 5)

(c) RSE = 22.93% (R = 50)

图 7.5: 基于空间自回归与矩阵分解的 90% 缺失率的灰度图像复原

7.2 离散傅立叶变换与循环卷积

离散傅立叶变换 (discrete Fourier transform) 是数学中非常重要的一个概念, 被应用于众 多领域, 如信号处理与图像处理。由于离散傅立叶变换通常采用快速傅立叶变换 (fast Fourier transform) 进行高效求解, 所以两者经常出现在一起。

7.2.1 一维卷积定理

实际上,循环卷积与离散傅立叶变换联系紧密。卷积定理 (convolution theorem) 可用于 描述两者之间的这种关系,给定任意向量 $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^T$,有

$$\boldsymbol{x} \star \boldsymbol{y} = \mathcal{F}^{-1}(\mathcal{F}(\boldsymbol{x}) \circ \mathcal{F}(\boldsymbol{y})) \tag{7.27}$$

恒成立。在这里, $\mathcal{F}(\cdot)$ 表示离散傅立叶变换; $\mathcal{F}^{-1}(\cdot)$ 表示离散傅立叶逆变换; 符号。表示元素间的点乘 (Hadamard product)。将向量做离散傅立叶变换的意义在于利用快速傅立叶变换进行高效计算。

假设向量 $\boldsymbol{x} \in \mathbb{R}^T$, 给定向量 $\boldsymbol{y} \in \mathbb{R}^{\tau}, \tau < T$, 使用离散傅立叶变换计算循环卷积时需首 先令

$$\boldsymbol{y} = (y_1, y_2, \cdots, y_{\tau}, \underbrace{0, \cdots, 0}_{T-\tau})^{\top} \in \mathbb{R}^T$$
(7.28)

然后分别对向量 x 与 y 进行离散傅立叶变换。

例 46. 给定向量 $x = (0, 1, 2, 3, 4)^{\top}$ 与 $y = (2, -1, 3)^{\top}$, 试根据卷积定理计算循环卷积 $z = x \star y$ 。

解.分别对向量x与y进行离散傅立叶变换,有

$$\begin{cases} \mathcal{F}(\boldsymbol{x}) = (10, -2.5 + 3.44i, -2.5 + 0.81i, -2.5 - 0.81i, -2.5 - 3.44i)^{\top} \\ \mathcal{F}(\boldsymbol{y}) = (4, -0.74 - 0.81i, 3.74 + 3.44i, 3.74 - 3.44i, -0.74 + 0.81i)^{\top} \end{cases}$$
(7.29)

其中, $i = \sqrt{-1}$ 表示复数的虚部。

根据卷积定理,有

$$\boldsymbol{z} = \mathcal{F}^{-1}(\mathcal{F}(\boldsymbol{x}) \circ \mathcal{F}(\boldsymbol{y})) = (5, 14, 3, 7, 11)^{\top}$$
(7.30)

根据卷积定理,若 $z = x \star y$,则

$$\boldsymbol{x} = \mathcal{F}^{-1}(\mathcal{F}(\boldsymbol{z}) \oslash \mathcal{F}(\boldsymbol{y})) \qquad \boldsymbol{y} = \mathcal{F}^{-1}(\mathcal{F}(\boldsymbol{z}) \oslash \mathcal{F}(\boldsymbol{x}))$$
(7.31)

其中,符号 ⊘ 表示元素间的点除 (Hadamard division)。

例 47. 给定向量 $x = (0, 1, 2, 3, 4)^{\top}$ 与 $z = (5, 14, 3, 7, 11)^{\top}$, 若 $z = x \star y$, 试根据卷积定理 计算 y。

解. 根据卷积定理, 有

$$\boldsymbol{y} = \mathcal{F}^{-1}(\mathcal{F}(\boldsymbol{z}) \oslash \mathcal{F}(\boldsymbol{x})) = (2, -1, 3, 0, 0)^{\top}$$
(7.32)

7.2.2 二维卷积定理

对于任意矩阵 $X \in \mathbb{R}^{M \times N}$ 与 $K \in \mathbb{R}^{\nu_1 \times \nu_2}$,其中, $\nu_1 \leq M, \nu_2 \leq N$,若两者之间的循环 卷积为 $Y = K \star X \in \mathbb{R}^{M \times N}$,则矩阵 Y 的任意元素为

$$y_{m,n} = \sum_{i=1}^{\nu_1} \sum_{j=1}^{\nu_2} \kappa_{i,j} x_{m-i+1,n-j+1}, \,\forall (m,n)$$
(7.33)

其中, $\kappa_{i,j}$ 为矩阵 **K** 的第 (i,j) 个元素。

根据循环卷积定义,矩阵 Y 的第 m 行为

$$y_{m,:} = \sum_{i=1}^{\nu_1} \kappa_{i,:} \star x_{m-i+1,:}$$

= $\sum_{i=1}^{\nu_1} \mathcal{F}^{-1}(\mathcal{F}(\kappa_{i,:}) \circ \mathcal{F}(x_{m-i+1,:}))$ (7.34)

其中, $\kappa_{i,:}$ 为矩阵 K 的第 i 行。

矩阵Y的第n列为

$$\boldsymbol{y}_{:,n} = \sum_{j=1}^{\nu_2} \boldsymbol{\kappa}_{:,j} \star \boldsymbol{x}_{:,n-j+1} \\
= \sum_{j=1}^{\nu_2} \mathcal{F}^{-1}(\mathcal{F}(\boldsymbol{\kappa}_{:,j}) \circ \mathcal{F}(\boldsymbol{x}_{:,n-j+1}))$$
(7.35)

其中, $\kappa_{:,i}$ 为矩阵 **K** 的第 j 列。

在这里,二维循环卷积与离散傅立叶变换之间的卷积定理也可写作如下形式:

$$\boldsymbol{Y} = \boldsymbol{K} \star \boldsymbol{X} = \mathcal{F}^{-1}(\mathcal{F}(\boldsymbol{K}) \circ \mathcal{F}(\boldsymbol{X}))$$
(7.36)

其中, F(·) 表示二维离散傅立叶变换; F⁻¹(·) 表示二维离散傅立叶逆变换。

例 48. 给定矩阵
$$X = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 5 & 6 & 7 \\ 7 & 8 & 9 & 10 \\ 10 & 11 & 12 & 13 \end{bmatrix}$$
 与 $K = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$, 试根据卷积定理计算二维循
环卷积 $Y = K \star X_{\circ}$

解. 根据卷积定理, 二维循环卷积为

$$\mathbf{Y} = \mathcal{F}^{-1}(\mathcal{F}(\mathbf{K}) \circ \mathcal{F}(\mathbf{X})) = \begin{bmatrix} 405 & 390 & 363 & 408 \\ 360 & 345 & 318 & 363 \\ 207 & 192 & 165 & 210 \\ 342 & 327 & 300 & 345 \end{bmatrix}$$
(7.37)

7.2.3 Parseval 定理

Parseval 定理 (Parseval's thorem) 表明信号的能量在时域与频域相等。在离散傅立叶变换中,对于任意向量 $\boldsymbol{x} = (x_1, x_2, \cdots, x_T) \in \mathbb{R}^T$,离散形式的 Parseval 定理为

$$\|\boldsymbol{x}\|_{2}^{2} = \frac{1}{T} \|\mathcal{F}(\boldsymbol{x})\|_{2}^{2}$$
 (7.38)

例 49. 给定向量 $\boldsymbol{x} = (0, 1, 2, 3, 4)^{\top}$, 试写出 $\|\boldsymbol{x}\|_2^2$ 与 $\|\mathcal{F}(\boldsymbol{x})\|_2^2$ 。

解. 根据 ℓ₂ 范数定义,有

$$\|\boldsymbol{x}\|_{2}^{2} = 0^{2} + 1^{2} + 2^{2} + 3^{2} + 4^{2} = 30$$
(7.39)

由于

$$\mathcal{F}(\boldsymbol{x}) = (10, -2.5 + 3.44i, -2.5 + 0.81i, -2.5 - 0.81i, -2.5 - 3.44i)^{\top}$$
(7.40)

其中, $i = \sqrt{-1}$ 表示复数的虚部。故 $\|\mathcal{F}(x)\|_2^2 = 150$ 。

针对二维离散傅立叶变量,给定任意矩阵 $X \in \mathbb{R}^{M \times N}$, Parseval 定理为

$$\|\boldsymbol{X}\|_{F}^{2} = \frac{1}{MN} \|\mathcal{F}(\boldsymbol{X})\|_{F}^{2}$$
(7.41)

例 50. 给定矩阵 $\boldsymbol{X} = \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix}$, 试写出 $\|\boldsymbol{X}\|_F^2$ 与 $\|\mathcal{F}(\boldsymbol{X})\|_F^2$ 。

解·根据 F 范数定义,有

$$\|\boldsymbol{X}\|_{F}^{2} = 5^{2} + 6^{2} + 7^{2} + 8^{2} + 9^{2} + 10^{2} = 355$$
(7.42)

由于

$$\mathcal{F}(\boldsymbol{X}) = \begin{bmatrix} 45 & -3 + 1.73i & -3 - 1.73i \\ -9 & 0 & 0 \end{bmatrix}$$
(7.43)

其中, $i = \sqrt{-1}$ 表示复数的虚部。故 $\|\mathcal{F}(\mathbf{X})\|_F^2 = 2130$ 。

图 7.6: 循环矩阵示意图

7.3 离散傅立叶变换与循环矩阵核范数

7.3.1 循环矩阵定义

循环矩阵 (circulant matrix) 是一种特殊的代数结构,广泛应用于信号处理等。从定义出发,给定任意向量 $\boldsymbol{x} = (x_1, x_2, \cdots, x_T)^{\top} \in \mathbb{R}^T$,其对应的循环矩阵可写作如下形式:

$$C(\boldsymbol{x}) = \begin{bmatrix} x_1 & x_T & x_{T-1} & \cdots & x_2 \\ x_2 & x_1 & x_T & \cdots & x_3 \\ x_3 & x_2 & x_1 & \cdots & x_4 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_T & x_{T-1} & x_{T-2} & \cdots & x_1 \end{bmatrix} \in \mathbb{R}^{T \times T}$$
(7.44)

其中, $C : \mathbb{R}^T \to \mathbb{R}^{T \times T}$ 表示循环算子 (circulant operator)。该循环矩阵的第一列为向量 x 本身, 对角线元素均为 x_1 。

例 51. 给定任意向量 $x = (x_1, x_2, x_3, x_4, x_5)^{\mathsf{T}} \in \mathbb{R}^5$, 试写出其对应的循环矩阵。

解. 向量 x 对应的循环矩阵为

$$\mathcal{C}(\boldsymbol{x}) = \begin{bmatrix}
x_1 & x_5 & x_4 & x_3 & x_2 \\
x_2 & x_1 & x_5 & x_4 & x_3 \\
x_3 & x_2 & x_1 & x_5 & x_4 \\
x_4 & x_3 & x_2 & x_1 & x_5 \\
x_5 & x_4 & x_3 & x_2 & x_1
\end{bmatrix} \in \mathbb{R}^{5 \times 5}$$
(7.45)

图7.6直观描述了循环矩阵的构造规则。

例 52. 给定任意向量 $\mathbf{x} = (x_1, x_2, \dots, x_T)^\top \in \mathbb{R}^T$ 与 $\mathbf{y} = (y_1, y_2, \dots, y_T)^\top \in \mathbb{R}^T$,若两者之 间的循环卷积 (circular convolution) 为 $\mathbf{z} = \mathbf{x} \star \mathbf{y} \in \mathbb{R}^T$,其中,符号 \star 表示卷积运算,则向 量 \mathbf{z} 的任意元素为

$$z_t = \sum_{k=1}^T x_{t-k+1} y_k, \, \forall t \in \{1, 2, \dots, T\}$$
(7.46)

其中,当 $t+1 \leq k$ 时,则令 $x_{t-k+1} = x_{t-k+1+T}$ 。试根据循环矩阵的定义写出循环卷积。

解. 在这里,循环卷积可写作如下形式:

$$\boldsymbol{z} = \boldsymbol{x} \star \boldsymbol{y} = \begin{bmatrix} x_1 y_1 + x_T y_2 + \dots + x_2 y_T \\ x_2 y_1 + x_1 y_2 + \dots + x_3 y_T \\ \vdots \\ x_T y_1 + x_{T-1} y_2 + \dots + x_1 y_T \end{bmatrix} = \begin{bmatrix} x_1 & x_T & \cdots & x_2 \\ x_2 & x_1 & \cdots & x_3 \\ \vdots & \vdots & \ddots & \vdots \\ x_T & x_{T-1} & \cdots & x_1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_T \end{bmatrix} = \mathcal{C}(\boldsymbol{x}) \boldsymbol{y} \quad (7.47)$$

7.3.2 循环矩阵核范数

在线性代数中,矩阵的核范数为奇异值之和。对于任意矩阵 $X \in \mathbb{R}^{M \times N}$,其奇异值分解为

$$\boldsymbol{X} = \sum_{r=1}^{\min\{M,N\}} \sigma_r \boldsymbol{u}_r \boldsymbol{v}_r^{\top}$$
(7.48)

其中,奇异值为 $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_{\min\{M,N\}}$;矩阵的核范数为

$$\|\boldsymbol{X}\|_{*} = \sum_{r=1}^{\min\{M,N\}} \sigma_{r}$$
(7.49)

给定向量 $x \in \mathbb{R}^T$,其循环矩阵为

$$C(\boldsymbol{x}) = \begin{bmatrix} x_1 & x_T & x_{T-1} & \cdots & x_2 \\ x_2 & x_1 & x_T & \cdots & x_3 \\ x_3 & x_2 & x_1 & \cdots & x_4 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_T & x_{T-1} & x_{T-2} & \cdots & x_1 \end{bmatrix} \in \mathbb{R}^{T \times T}$$
(7.50)

对该循环矩阵进行特征值分解,有

$$C(\boldsymbol{x}) = \boldsymbol{U} \operatorname{diag}(\mathcal{F}(\boldsymbol{x}))\boldsymbol{U}^{H}$$
(7.51)

其中, $U \in \mathbb{C}^{T \times T}$ 为酉矩阵 (unitary matrix); \cdot^{H} 表示共轭转置 (conjugate transpose)。 因此, 循环矩阵的核范数可写作如下形式:

$$\begin{aligned} \|\mathcal{C}(\boldsymbol{x})\|_{*} &= \|\boldsymbol{U}\operatorname{diag}(\mathcal{F}(\boldsymbol{x}))\boldsymbol{U}^{H}\|_{*} \\ &= \|\operatorname{diag}(\mathcal{F}(\boldsymbol{x}))\|_{*} \\ &= \|\mathcal{F}(\boldsymbol{x})\|_{1} \end{aligned}$$
(7.52)

由此可见,循环矩阵的核范数可转化为离散傅立叶变换的 ℓ_1 范数。在这里,快速傅立叶 变换的计算复杂度为 $\mathcal{O}(T\log T)$,可大大提高求解循环矩阵的核范数最小化问题的计算效率。

例 53. 给定向量 $x = (0, 1, 2, 3, 4)^{\top}$, 试写出循环矩阵 C(x) 的奇异值与 $\|\mathcal{F}(x)\|_{1}$ 。

解. 根据循环矩阵定义,有

$$C(\boldsymbol{x}) = \begin{bmatrix} 0 & 4 & 3 & 2 & 1 \\ 1 & 0 & 4 & 3 & 2 \\ 2 & 1 & 0 & 4 & 3 \\ 3 & 2 & 1 & 0 & 4 \\ 4 & 3 & 2 & 1 & 0 \end{bmatrix}$$
(7.53)

对其进行奇异值分解, 奇异值构成的向量为

$$\boldsymbol{\sigma} = (10, 4.25, 4.25, 2.63, 2.63)^{\top} \tag{7.54}$$

另外,直接对向量 x 作离散傅立叶变换,有

$$\mathcal{F}(\boldsymbol{x}) = (10, -2.5 + 3.44i, -2.5 + 0.81i, -2.5 - 0.81i, -2.5 - 3.44i)^{\top}$$
(7.55)

其中, $i = \sqrt{-1}$ 表示复数的虚部。

由此,可得到

$$\|\mathcal{F}(\boldsymbol{x})\|_{1} = 10 + 2\sqrt{2.5^{2} + 3.44^{2}} + 2\sqrt{2.5^{2} + 0.81^{2}} = 10 + 8.50 + 5.26 = 23.76$$
(7.56)

7.3.3 *l*₁ 范数最小化问题

一般而言,假设图优化问题的目标函数为 f(x) = g(x) + h(x) 是由 g(x) 与 h(x) 叠加而成的,其中,限定 g(x) 是不可微的凸函数、h(x) 是可微的凸函数,则这类优化问题可通过近端梯度下降法 (proximal gradient descent) 进行求解。

对于向量 x, 令 $g(x) = ||x||_1$ 表示不可微函数⁴、 $h(x) = \frac{\lambda}{2} ||x - w||_2^2$ (w 已知)表示可微 函数,则 ℓ_1 范数最小化问题可归纳为

$$\min_{\boldsymbol{x}} \|\boldsymbol{x}\|_1 + \frac{\lambda}{2} \|\boldsymbol{x} - \boldsymbol{w}\|_2^2$$
(7.57)

在 ℓ_1 范数最小化问题中, 若 $\boldsymbol{w} \in \mathbb{R}^T$ 已知、 $\boldsymbol{x} \in \mathbb{R}^T$ 未知, 则近端算子 (proximal operator) 可写作如下的软阈值函数 (soft thresholding):

$$S_{1/\lambda}(\boldsymbol{w}) = \underset{\boldsymbol{x}}{\operatorname{arg\,min}} \|\boldsymbol{x}\|_1 + \frac{\lambda}{2} \|\boldsymbol{x} - \boldsymbol{w}\|_2^2$$
(7.58)

对于向量 x 中的任意元素 x_t ,有

$$x_{t} := \mathcal{S}_{1/\lambda}(w_{i}) = \begin{cases} w_{i} - 1/\lambda & \text{if } w_{i} > 1/\lambda \\ w_{i} + 1/\lambda & \text{if } w_{i} \leq -1/\lambda \\ 0 & \text{otherwise} \end{cases}$$
(7.59)

在写法上,软阈值函数可进一步写作如下形式5:

$$x_t := \frac{w_t}{|w_t|} \cdot \max\{0, |w_t| - 1/\lambda\}, t = 1, 2, \dots, T$$
(7.60)

故向量 x 的解析解为

$$\boldsymbol{x} := \mathcal{S}_{1/\lambda}(\boldsymbol{w}) \tag{7.61}$$

其中, $S_{1/\lambda}(\cdot)$ 表示超参数为 λ 得软阈值函数; max{x, y} 表示取 x = y 之间较大的数值。

7.3.4 循环矩阵核范数最小化问题

对于任意观测向量 $\boldsymbol{y} \in \mathbb{R}^T$,若被观测元素的索引集合为 Ω ,则循环矩阵核范数最小化问题 [Liu and Zhang, 2022] 可描述为

$$\min_{\boldsymbol{x}} \|\mathcal{C}(\boldsymbol{x})\|_{*}$$
s.t. $\|\mathcal{P}_{\Omega}(\boldsymbol{x} - \boldsymbol{y})\|_{2} \le \epsilon$

$$(7.62)$$

其中,约束条件中的 *ϵ* 表示容许误差。为便于求解,可将上述核范数最小化问题中的约束条件进行改写,令约束条件作为目标函数的正则项,则构造出来的优化问题为

$$\min_{\boldsymbol{x},\boldsymbol{z}} \| \mathcal{C}(\boldsymbol{x}) \|_* + \frac{\eta}{2} \| \mathcal{P}_{\Omega}(\boldsymbol{z} - \boldsymbol{y}) \|_2^2$$

s.t. $\boldsymbol{x} = \boldsymbol{z}$ (7.63)

其中, η 为正则项的权重系数。由于观测向量存在缺失值, 为便于求解优化问题, 可令中间变 量的等价关系作为约束条件。

⁴对于任意向量 $\boldsymbol{x} \in \mathbb{R}^T$, 其 ℓ_1 范数为 $\|\boldsymbol{x}\|_1 = \sum_{t=1}^T |x_t|$, 即元素绝对值之和。 ⁵这种写法可确保当 $\boldsymbol{w}, \boldsymbol{x} \in \mathbb{C}^T$ 时, 软阈值函数依然适用。 通常来说,求解上述优化问题可采用 ADMM 算法。使用 ADMM 求解过程中,需首先构造增广拉格朗日函数,即

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{w}) = \|\mathcal{C}(\boldsymbol{x})\|_* + \frac{\lambda}{2} \|\boldsymbol{x} - \boldsymbol{z}\|_2^2 + \langle \boldsymbol{w}, \boldsymbol{x} - \boldsymbol{z} \rangle + \frac{\eta}{2} \|\mathcal{P}_{\Omega}(\boldsymbol{z} - \boldsymbol{y})\|_2^2$$
(7.64)

其中, $\boldsymbol{w} \in \mathbb{R}^T$ 为拉格朗日乘子; λ 为权重系数。符号 $\langle :,: \rangle$ 表示内积 (inner product), 满足 如下关系:

$$\langle \boldsymbol{w}, \boldsymbol{x} - \boldsymbol{z} \rangle = \boldsymbol{w}^{\top} (\boldsymbol{x} - \boldsymbol{z}) \in \mathbb{R}$$
 (7.65)

然后,可采用如下 ADMM 算法:

$$\begin{cases} \boldsymbol{x} := \underset{\boldsymbol{x}}{\operatorname{arg\,min}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{w}) \\ \boldsymbol{z} := \underset{\boldsymbol{z}}{\operatorname{arg\,min}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{w}) \\ \boldsymbol{w} := \boldsymbol{w} + \lambda(\boldsymbol{x} - \boldsymbol{z}) \end{cases}$$
(7.66)

对于变量 x,有

$$\boldsymbol{x} := \underset{\boldsymbol{x}}{\operatorname{arg\,min}} \|\mathcal{C}(\boldsymbol{x})\|_{*} + \frac{\lambda}{2} \|\boldsymbol{x} - \boldsymbol{z}\|_{2}^{2} + \langle \boldsymbol{w}, \boldsymbol{x} - \boldsymbol{z} \rangle$$

$$= \underset{\boldsymbol{x}}{\operatorname{arg\,min}} \|\mathcal{C}(\boldsymbol{x})\|_{*} + \frac{\lambda}{2} \boldsymbol{x}^{\top} \boldsymbol{x} - \lambda \langle \boldsymbol{z}, \boldsymbol{x} \rangle + \langle \boldsymbol{w}, \boldsymbol{x} \rangle$$

$$= \underset{\boldsymbol{x}}{\operatorname{arg\,min}} \|\mathcal{C}(\boldsymbol{x})\|_{*} + \frac{\lambda}{2} \boldsymbol{x}^{\top} \boldsymbol{x} - \lambda \langle \boldsymbol{z} - \boldsymbol{w} / \lambda, \boldsymbol{x} \rangle$$

$$= \underset{\boldsymbol{x}}{\operatorname{arg\,min}} \|\mathcal{C}(\boldsymbol{x})\|_{*} + \frac{\lambda}{2} \|\boldsymbol{x} - \boldsymbol{z} + \boldsymbol{w} / \lambda\|_{2}^{2}$$

$$= \underset{\boldsymbol{x}}{\operatorname{arg\,min}} \|\mathcal{F}(\boldsymbol{x})\|_{1} + \frac{\lambda}{2T} \|\mathcal{F}(\boldsymbol{x} - \boldsymbol{z} + \boldsymbol{w} / \lambda)\|_{2}^{2}$$
(7.67)

令

$$\boldsymbol{h} = \boldsymbol{z} - \boldsymbol{w}/\lambda \tag{7.68}$$

若 $\{\hat{x}, \hat{h}\} = \{\mathcal{F}(x), \mathcal{F}(h)\}$ 记作离散傅立叶变换之后的变量,根据公式(7.58)中给出的软 阈值过程,则变量 \hat{x} 的解析解为

$$\hat{x}_t = \frac{\hat{h}_t}{|\hat{h}_t|} \cdot \max\{0, |\hat{h}_t| - T/\lambda\}, \ t = 1, 2, \dots, T$$
(7.69)

因此,通过离散傅立叶逆变换,则变量 x 的更新公式为

$$\boldsymbol{x} := \mathcal{F}^{-1}(\hat{\boldsymbol{x}}) \tag{7.70}$$

例 54. 现有循环矩阵核范数最小化问题为

$$\min_{\boldsymbol{x}} \|\mathcal{C}(\boldsymbol{x})\|_{*} + \frac{\lambda}{2} \|\boldsymbol{x} - \boldsymbol{z}\|_{2}^{2}$$
(7.71)

其中, $z \in \mathbb{R}^T$ 为已知变量; $x \in \mathbb{R}^T$ 为待优化变量。

通常来说,可将公式(7.71)中的优化问题写作如下形式:

$$\min_{\boldsymbol{x}} \|\mathcal{F}(\boldsymbol{x})\|_1 + \frac{\lambda}{2T} \|\mathcal{F}(\boldsymbol{x} - \boldsymbol{z})\|_2^2$$
(7.72)

其中, F(·) 表示离散傅立叶变换。令

$$\hat{\boldsymbol{h}} = \mathcal{F}(\boldsymbol{z}) \tag{7.73}$$

则该 l1 范数最小化问题的解析解为

$$\boldsymbol{x} := \mathcal{F}^{-1}(\hat{\boldsymbol{x}}) \qquad \hat{x}_t = \frac{\hat{h}_t}{|\hat{h}_t|} \cdot \max\{0, |\hat{h}_t| - T/\lambda\}, \ t = 1, 2, \dots, T$$
 (7.74)

其中, F⁻¹(·) 表示离散傅立叶逆变换。

不妨令 $z = (0, 1, 2, 3, 4)^{\top}$ 与 $\lambda = 2$, 试写出公式(7.71)的最优解。

解. 对已知变量 z 进行离散傅立叶变换,有

$$\hat{\boldsymbol{h}} = \mathcal{F}(\boldsymbol{z}) = (10, -2.5 + 3.44i, -2.5 + 0.81i, -2.5 - 0.81i, -2.5 - 3.44i)^{\top}$$
(7.75)

其中, $i = \sqrt{-1}$ 表示复数的虚部。向量 \hat{h} 的绝对值为

$$|\hat{\boldsymbol{h}}| = (10, 4.25, 2.63, 2.63, 4.25)^{\top}$$
 (7.76)

根据公式(7.74),可得到

$$\boldsymbol{x} = (1.04, 0.86, 1.5, 2.14, 1.96)^{\top} \tag{7.77}$$

在这里, 公式(7.71)中的优化问题目标函数为

$$\|\mathcal{C}(\boldsymbol{x})\|_{*} + \frac{\lambda}{2} \|\boldsymbol{x} - \boldsymbol{z}\|_{2}^{2} = 17.51$$
 (7.78)

对于变量 z,可分别对 $\mathcal{P}_{\Omega}(z)$ 与 $\mathcal{P}_{\Omega}^{\perp}(z)$ 求偏导数:

$$\begin{cases} \frac{\partial \mathcal{L}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{w})}{\partial \mathcal{P}_{\Omega}(\boldsymbol{z})} = \lambda \mathcal{P}_{\Omega}(\boldsymbol{z} - \boldsymbol{x} - \boldsymbol{w}/\lambda) + \eta \mathcal{P}_{\Omega}(\boldsymbol{z} - \boldsymbol{y}) \\ \frac{\partial \mathcal{L}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{w})}{\partial \mathcal{P}_{\Omega}^{\perp}(\boldsymbol{z})} = \lambda \mathcal{P}_{\Omega}^{\perp}(\boldsymbol{z} - \boldsymbol{x} - \boldsymbol{w}/\lambda) \end{cases}$$
(7.79)

令偏导数为 0,则变量 z 的解析解为

$$\boldsymbol{z} := \frac{1}{\lambda + \eta} \mathcal{P}_{\Omega}(\lambda \boldsymbol{x} + \boldsymbol{w} + \eta \boldsymbol{y}) + \mathcal{P}_{\Omega}^{\perp}(\boldsymbol{x} + \boldsymbol{w}/\lambda)$$
(7.80)

算法5给出了循环矩阵核范数最小化算法的具体实现过程。

```
      Algorithm 5 循环矩阵核范数最小化算法

      Input: 观测向量 y \in \mathbb{R}^T, 被观测元素的索引集合 Ω, 超参数 {\lambda, \eta}。

      Output: 重构出来的向量 x \in \mathbb{R}^T。

      1: 对变量 {x, z, w} 进行初始化;

      2: for i = 0 to 最大迭代次数 do

      3: 对变量 {z, w} 进行快速傅立叶变换;

      4: 根据公式(7.68)计算 h;

      5: 根据公式(7.69)计算 \hat{x};

      6: 令 x := \mathcal{F}^{-1}(\hat{x});

      7: 根据公式(7.80)计算 z;

      8: 计算 w := w + \lambda(x - z);

      9: end for
```

例 55. 给定灰度图像数据 $Y \in \mathbb{R}^{M \times N}$,若矩阵 Y存在缺失值,对该矩阵进行向量化 y =vec(Y),令 Ω 表示被观测元素的索引集合,试使用循环矩阵核范数最小化算法对如图7.3(b)所示的灰度图像进行复原。

解. 在图7.7所示的灰度图像复原实验中,将循环矩阵核范数最小化算法中的超参数设置为 $\lambda = 10^{-3}MN, \eta = 10^{2}\lambda$ 。

图 7.7: 基于循环矩阵核范数最小化算法的 90% 缺失率的灰度图像复原,其中,RSE = 13.05%。

7.4 低秩拉普拉斯卷积模型

7.4.1 拉普拉斯卷积核

一般而言,对关系型数据进行建模时,可对数据之间的关联构造拉普拉斯矩阵。若 $D \in \mathbb{R}^{T \times T}$ 表示度矩阵 (degree matrix)、 $A \in \mathbb{R}^{T \times T}$ 表示邻接矩阵 (adjacency matrix),则对应的拉普拉斯矩阵为

$$\boldsymbol{L} = \boldsymbol{D} - \boldsymbol{A} \tag{7.81}$$

举例来说,图7.8(a)中的图模型为两两相结、首尾相连的循环图,对应的图拉普拉斯矩阵为

$$\boldsymbol{L} = \begin{bmatrix} 2 & -1 & 0 & 0 & -1 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ -1 & 0 & 0 & -1 & 2 \end{bmatrix}$$
(7.82)

图7.8(b)对应的图拉普拉斯矩阵为

$$\boldsymbol{L} = \begin{bmatrix} 4 & -1 & -1 & -1 & -1 \\ -1 & 4 & -1 & -1 & -1 \\ -1 & -1 & 4 & -1 & -1 \\ -1 & -1 & -1 & 4 & -1 \\ -1 & -1 & -1 & -1 & 4 \end{bmatrix}$$
(7.83)

(a) 度为 2 的循环图

(b) 度为 4 的循环图

```
图 7.8: 基于关系型数据 {x<sub>1</sub>, x<sub>2</sub>,..., x<sub>5</sub>} 的无向循环图
```

由于这两个拉普拉斯矩阵均为循环矩阵,不妨令其第一列为拉普拉斯核 (Laplacian kernel),则两者的拉普拉斯核分别为

$$\boldsymbol{\ell} = (2, -1, 0, 0, -1)^{\top} \qquad \boldsymbol{\ell} = (4, -1, -1, -1, -1)^{\top}$$
(7.84)

由此,对于任意向量 $\boldsymbol{x} = (x_1, x_2, \cdots, x_T)^\top \in \mathbb{R}^T$, 令 $\tau \in \mathbb{N}^+$ 为拉普拉斯核的超参数,其 中, $\tau \leq \frac{1}{2}(T-1)$,则拉普拉斯核可被定义 [Chen et al., 2022b] 为

$$\boldsymbol{\ell} = (2\tau, \underbrace{-1, \cdots, -1}_{\tau}, 0, \cdots, 0, \underbrace{-1, \cdots, -1}_{\tau})^{\top} \in \mathbb{R}^{T}$$
(7.85)

该拉普拉斯核同时也是拉普拉斯矩阵的第一列。拉普拉斯核的第一个元素为 2*τ*,表示拉 普拉斯矩阵的度。

7.4.2 拉普拉斯时序正则

在时间序列中,若数据向量为 $\boldsymbol{x} = (x_1, x_2, \cdots, x_T)^\top \in \mathbb{R}^T$,则基于拉普拉斯矩阵的时序 正则项为

$$\mathcal{R}_{\tau}(\boldsymbol{x}) = \frac{1}{2} \|\boldsymbol{L}\boldsymbol{x}\|_{2}^{2}$$
(7.86)

根据 Parseval 定理,可得到基于拉普拉斯核的时序正则项为

$$\mathcal{R}_{\tau}(\boldsymbol{x}) = \frac{1}{2} \|\boldsymbol{\ell} \star \boldsymbol{x}\|_{2}^{2} = \frac{1}{2T} \|\mathcal{F}(\boldsymbol{\ell}) \circ \mathcal{F}(\boldsymbol{x})\|_{2}^{2}$$
(7.87)

例 56. 试根据 Parseval 定理证明公式(7.87)。

解. 在公式(7.87)中,不妨令

 $\begin{cases} \boldsymbol{\alpha} = \boldsymbol{\ell} \star \boldsymbol{x} \\ \boldsymbol{\beta} = \mathcal{F}(\boldsymbol{\ell}) \circ \mathcal{F}(\boldsymbol{x}) \end{cases}$ (7.88)

根据卷积定理,有

$$\mathcal{F}(\boldsymbol{\alpha}) = \boldsymbol{\beta} \tag{7.89}$$

再根据 Parseval 定理,则

$$\|\boldsymbol{\alpha}\|_{2}^{2} = \frac{1}{T} \|\mathcal{F}(\boldsymbol{\alpha})\|_{2}^{2} = \frac{1}{T} \|\boldsymbol{\beta}\|_{2}^{2}$$
(7.90)

由此, 公式(7.87)得证。

例 57. 对于时间序列 $\boldsymbol{x} = (x_1, x_2, \cdots, x_T)^\top \in \mathbb{R}^T$ 而言,基于拉普拉斯核的时序正则项可对 时间序列的局部趋势 (local trend) 进行建模,以拉普拉斯核 $\boldsymbol{\ell} = (2, -1, 0, \cdots, 0 - 1)^\top \in \mathbb{R}^T$ 为例,试解释基于拉普拉斯核的时序正则项在局部趋势建模中所起的作用。

解. 根据定义,时序正则项 $\mathcal{R}_{\tau}(x)$ 可写作如下形式:

$$\mathcal{R}_{\tau}(\boldsymbol{x}) = \frac{1}{2}(2x_1 - (x_2 + x_T))^2 + \frac{1}{2}(2x_2 - (x_3 + x_1))^2 + \dots + \frac{1}{2}(2x_T - (x_1 + x_{T-1}))^2 \quad (7.91)$$

由此可见,该正则项实际上对时间序列进行了平滑处理。

上述定义的拉普拉斯卷积核对于有向图依然适用,若令拉普拉斯卷积核为 $\ell = (1, -1, 0, \cdots, 0)^{\top}$,则相应的拉普拉斯矩阵⁶为

$$\boldsymbol{L} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & -1 \\ -1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & -1 & 1 \end{bmatrix}$$
(7.92)

⁶Hiromu Takayama, Tatsuya Yokota (2022). Fast Signal Completion Algorithm with Cyclic Convolutional Smoothing. Proceedings of 2022 APSIPA Annual Summit and Conference.

除去拉普拉斯矩阵的第一行,可构造如下矩阵:

$$\boldsymbol{\Psi} = \begin{bmatrix} \boldsymbol{0}_{(T-1)\times 1} & \boldsymbol{I}_{T-1} \end{bmatrix} - \begin{bmatrix} \boldsymbol{I}_{T-1} & \boldsymbol{0}_{(T-1)\times 1} \end{bmatrix}$$
(7.93)

由此,相应的时序正则项为 $\frac{1}{2} \| \Psi x \|_2^2$,该正则项对时间序列建模时可起到平滑的作用。

7.4.3 一维低秩拉普拉斯卷积模型

在时间序列缺失值重构任务中,对全局趋势 (global trend) 与局部趋势建模往往缺一不可。对于任意时间序列 $\boldsymbol{x} = (x_1, x_2, \cdots, x_T)^{\top} \in \mathbb{R}^T$ 而言,可采用循环矩阵核范数捕捉低秩信息、借助拉普拉斯时序正则项刻画局部趋势 (如图7.9所示),由此,得到的低秩拉普拉斯卷积 模型的目标函数兼具循环矩阵核范数与循环卷积⁷,即

$$\min_{\boldsymbol{x}} \|\mathcal{C}(\boldsymbol{x})\|_{*} + \frac{\gamma}{2} \|\boldsymbol{\ell} \star \boldsymbol{x}\|_{2}^{2}$$

s.t. $\|\mathcal{P}_{\Omega}(\boldsymbol{x} - \boldsymbol{y})\|_{2} \leq \epsilon$ (7.94)

其中, $\ell \in \mathbb{R}^T$ 为表征时序关联的拉普拉斯卷积核; γ 为拉普拉斯时序正则项的权重系数; 约 束条件中的 ϵ 表示容许误差。

图 7.9: 低秩拉普拉斯卷积模型的示意图

为便于求解,可将上述优化问题中的约束条件进行改写,令约束条件作为目标函数的正则项,则构造出来的优化问题为

$$\min_{\boldsymbol{x},\boldsymbol{z}} \|\mathcal{C}(\boldsymbol{x})\|_* + \frac{\gamma}{2} \|\boldsymbol{\ell} \star \boldsymbol{x}\|_2^2 + \frac{\eta}{2} \|\mathcal{P}_{\Omega}(\boldsymbol{z} - \boldsymbol{y})\|_2^2$$

s.t. $\boldsymbol{x} = \boldsymbol{z}$ (7.95)

其中, η 为正则项的权重系数。由于观测向量存在缺失值, 为便于求解优化问题, 可令中间变 量的等价关系作为约束条件。

使用 ADMM 算法求解时,需首先构造增广拉格朗日函数,即

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{w}) = \|\mathcal{C}(\boldsymbol{x})\|_{*} + \frac{\gamma}{2} \|\boldsymbol{\ell} \star \boldsymbol{x}\|_{2}^{2} + \frac{\lambda}{2} \|\boldsymbol{x} - \boldsymbol{z}\|_{2}^{2} + \langle \boldsymbol{w}, \boldsymbol{x} - \boldsymbol{z} \rangle + \frac{\eta}{2} \|\mathcal{P}_{\Omega}(\boldsymbol{z} - \boldsymbol{y})\|_{2}^{2}$$
(7.96)
对于变量 \boldsymbol{x} , 子问题为

$$\boldsymbol{x} := \underset{\boldsymbol{x}}{\operatorname{arg\,min}} \| \mathcal{C}(\boldsymbol{x}) \|_{*} + \frac{\gamma}{2} \| \boldsymbol{\ell} \star \boldsymbol{x} \|_{2}^{2} + \frac{\lambda}{2} \| \boldsymbol{x} - \boldsymbol{z} + \boldsymbol{w} / \lambda \|_{2}^{2}$$

$$= \underset{\boldsymbol{x}}{\operatorname{arg\,min}} \| \mathcal{F}(\boldsymbol{x}) \|_{1} + \frac{\gamma}{2T} \| \mathcal{F}(\boldsymbol{\ell}) \circ \mathcal{F}(\boldsymbol{x}) \|_{2}^{2} + \frac{\lambda}{2T} \| \mathcal{F}(\boldsymbol{x} - \boldsymbol{z} + \boldsymbol{w} / \lambda) \|_{2}^{2}$$
(7.97)

⁷Xinyu Chen, Zhanhong Cheng, Nicolas Saunier, Lijun Sun (2022). Laplacian Convolutional Representation for Traffic Time Series Imputation. arXiv preprint arXiv:2212.01529.
若 { $\hat{\ell}$, \hat{x} , \hat{z} , \hat{w} } = { $\mathcal{F}(\ell)$, $\mathcal{F}(x)$, $\mathcal{F}(z)$, $\mathcal{F}(w)$ }, 令子问题的正则项为

$$f = \frac{\gamma}{2T} \|\mathcal{F}(\boldsymbol{\ell}) \circ \mathcal{F}(\boldsymbol{x})\|_2^2 + \frac{\lambda}{2T} \|\mathcal{F}(\boldsymbol{x} - \boldsymbol{z} + \boldsymbol{w}/\lambda)\|_2^2$$
(7.98)

相应地,对于变量 \hat{x} ,函数 f 的偏导数为

$$\frac{\partial f}{\partial \hat{\boldsymbol{x}}} = \frac{\gamma}{T} \hat{\boldsymbol{\ell}} \circ \hat{\boldsymbol{\ell}} \circ \hat{\boldsymbol{x}} + \frac{\lambda}{T} (\hat{\boldsymbol{x}} - \hat{\boldsymbol{z}} + \hat{\boldsymbol{w}}/\lambda)
= \frac{1}{T} (\gamma \hat{\boldsymbol{\ell}} \circ \hat{\boldsymbol{\ell}} + \lambda \mathbb{1}_T) \circ \hat{\boldsymbol{x}} - \frac{1}{T} (\lambda \hat{\boldsymbol{z}} - \hat{\boldsymbol{w}})$$
(7.99)

其中,向量 $\mathbb{1}_T \in \mathbb{R}^T$ 的所有元素均为 1。

不妨定义

$$\hat{\boldsymbol{h}} = (\lambda \hat{\boldsymbol{z}} - \hat{\boldsymbol{w}}) \oslash (\gamma \hat{\boldsymbol{\ell}} \circ \hat{\boldsymbol{\ell}} + \lambda \mathbb{1}_T)$$
(7.100)

对应于 $\frac{\partial f}{\partial \hat{x}} = \mathbf{0}$ 。

由此,变量 \hat{x} 的解析解可根据公式(7.69)计算得到,通过离散傅立叶逆变换,变量 x的 更新公式为 $x := \mathcal{F}^{-1}(\hat{x})$ 。

在 ADMM 算法中,变量 z 的解析解与公式(7.80)一致;变量 w 的更新公式参见公式(7.66)。算法6给出了一维低秩拉普拉斯卷积模型的具体实现过程。

Algorithm 6 一维低秩拉普拉斯卷积模型 **Input:** 观测向量 $\boldsymbol{y} \in \mathbb{R}^T$, 被观测元素的索引集合 Ω , 超参数 $\{\gamma, \lambda, \eta, \tau\}$ 。 **Output:** 重构出来的向量 $x \in \mathbb{R}^T$ 。 1: 对变量 {x, z, w} 进行初始化; 2: **for** *i* = 0 to 最大迭代次数 **do** 对变量 {z,w} 进行快速傅立叶变换 3: 根据公式(7.100)计算 \hat{h} ; 4: 根据公式(7.69)计算 \hat{x} ; 5: $\diamondsuit \boldsymbol{x} := \mathcal{F}^{-1}(\hat{\boldsymbol{x}});$ 6: 7: 根据公式(7.80)计算 z; 计算 $\boldsymbol{w} := \boldsymbol{w} + \lambda(\boldsymbol{x} - \boldsymbol{z});$ 8:

9: end for

例 58. 给定某高速公路断面交通流的车速时间序列如图 7.10(a)所示,采集数据的时间粒度为 15 分钟,即每天预期可获取 96 个观测值;采集时长为 3 天,预期产生 288 个观测值,即 T = 288。现假设该车速时间序列存在 90% 的缺失值,如图 7.10(b)所示,试使用一维低秩拉 普拉斯卷积模型对部分观测的车速时间序列进行重构、修复缺失值。

图 7.10: 某高速公路断面交通流的车速时间序列,其中,蓝色曲线表示车速时间序列;蓝色圆 圈表示抽取的部分观测值。

解. 在图 7.11所示的重构时间序列中,将一维低秩拉普拉斯卷积模型中的超参数设置为 $\lambda = 5 \times 10^{-3}T, \gamma = 2\lambda, \eta = 100\lambda, \tau = 2$ 。从中不难发现,该模型重构出来的时间序列与真实时间序列趋势吻合。

图 7.11: 基于一维低秩拉普拉斯卷积模型的 90% 缺失率的车速时间序列重构,其中,红色曲 线表示重构出来的车速时间序列。

需要注意的是,这里给出的低秩拉普拉斯卷积模型除了重构时间序列外,也可对存在缺 失数据的图像进行复原。

例 59. 给定灰度图像数据 $Y \in \mathbb{R}^{M \times N}$,若矩阵 Y存在缺失值,对该矩阵进行向量化 y =vec(Y),令 Ω 表示被观测元素的索引集合,试使用一维低秩拉普拉斯卷积模型对图7.3(b)所示的灰度图像进行复原。

解. 在图7.12所示的灰度图像复原实验中,将一维低秩拉普拉斯卷积模型中的超参数设置为 $\lambda = 5 \times 10^{-3} MN, \gamma = \lambda, \eta = 10^2 \lambda, \tau = 1$ 。相比循环矩阵核范数最小化算法(复原效果为 RSE = 13.05%),一维低秩拉普拉斯卷积模型的复原效果 RSE = 11.23% 更好,因此,拉普拉斯 正则项起了非常重要的作用。

图 7.12: 基于一维低秩拉普拉斯卷积模型的 90% 缺失率的灰度图像复原,其中,RSE = 11.23%。

7.4.4 二维低秩拉普拉斯卷积模型

除了对时间序列进行建模,该模型同样适用于其他数据场景,例如图像复原。 例 60. 给定灰度图像数据 $Y \in \mathbb{R}^{M \times N}$,若矩阵 Y存在缺失值,令 Ω 表示被观测元素的索引 集合,构造如下的低秩拉普拉斯卷积模型:

$$\min_{\mathbf{X},\mathbf{Z}} \|\mathcal{F}(\mathbf{X})\|_{1} + \frac{\gamma}{2} \|\mathbf{K} \star \mathbf{X}\|_{F}^{2} + \frac{\eta}{2} \|\mathcal{P}_{\Omega}(\mathbf{Z} - \mathbf{Y})\|_{F}^{2}$$

$$s.t. \ \mathbf{X} = \mathbf{Z}$$
(7.101)

其中, 拉普拉斯卷积核为 $K = \ell_1 \ell_2^\top \in \mathbb{R}^{M \times N}$; γ, η 为正则项的权重系数。试求解该模型并对 图 7.3(b)所示的灰度图像进行复原。

解. 对公式(7.101)中的优化问题构造增广拉格朗日函数 (augmented Lagrangian function),即

$$\mathcal{L}(\boldsymbol{X}, \boldsymbol{Z}, \boldsymbol{W}) = \|\mathcal{F}(\boldsymbol{X})\|_{1} + \frac{\gamma}{2} \|\boldsymbol{K} \star \boldsymbol{X}\|_{F}^{2} + \frac{\lambda}{2} \|\boldsymbol{X} - \boldsymbol{Z}\|_{F}^{2} + \langle \boldsymbol{W}, \boldsymbol{X} - \boldsymbol{Z} \rangle + \frac{\eta}{2} \|\mathcal{P}_{\Omega}(\boldsymbol{Z} - \boldsymbol{Y})\|_{F}^{2}$$
(7.102)

相应地, ADMM 算法为

$$\begin{cases} \boldsymbol{X} := \underset{\boldsymbol{X}}{\operatorname{arg\,min}} \mathcal{L}(\boldsymbol{X}, \boldsymbol{Z}, \boldsymbol{W}) \\ \boldsymbol{Z} := \underset{\boldsymbol{Z}}{\operatorname{arg\,min}} \mathcal{L}(\boldsymbol{X}, \boldsymbol{Z}, \boldsymbol{W}) \\ = \frac{1}{\lambda + \eta} \mathcal{P}_{\Omega}(\lambda \boldsymbol{X} + \boldsymbol{W} + \eta \boldsymbol{Y}) + \mathcal{P}_{\Omega}^{\perp}(\boldsymbol{X} + \boldsymbol{W}/\lambda) \\ \boldsymbol{W} := \boldsymbol{W} + \lambda(\boldsymbol{X} - \boldsymbol{Z}) \end{cases}$$
(7.103)

其中, 变量 X 的解析解为

$$\begin{aligned} \boldsymbol{X} &:= \underset{\boldsymbol{X}}{\operatorname{arg\,min}} \quad \|\mathcal{F}(\boldsymbol{X})\|_{1} + \frac{\gamma}{2MN} \|\mathcal{F}(\boldsymbol{K}) \circ \mathcal{F}(\boldsymbol{X})\|_{F}^{2} + \frac{\lambda}{2MN} \|\mathcal{F}(\boldsymbol{X} - \boldsymbol{Z} + \boldsymbol{W}/\lambda)\|_{F}^{2} \\ &= \underset{\boldsymbol{X}}{\operatorname{arg\,min}} \quad \|\mathcal{F}(\boldsymbol{X})\|_{1} + \frac{\lambda}{2MN} \|\mathcal{F}(\boldsymbol{X}) - (\mathcal{F}(\lambda \boldsymbol{Z} - \boldsymbol{W})) \oslash (\gamma \mathcal{F}(\boldsymbol{K}) \circ \mathcal{F}(\boldsymbol{K}) + \lambda \mathbb{1}_{M \times N})\|_{F}^{2} \end{aligned}$$

$$(7.104)$$

当 $\tau = 1$, 拉普拉斯卷积核为

$$\begin{cases} \boldsymbol{\ell}_1 = (2, -1, 0, \cdots, 0, -1)^\top \in \mathbb{R}^M \\ \boldsymbol{\ell}_2 = (2, -1, 0, \cdots, 0, -1)^\top \in \mathbb{R}^N \end{cases}$$
(7.105)

当 τ = 2 时, 拉普拉斯卷积核为

$$\begin{cases} \boldsymbol{\ell}_1 = (4, -1, -1, 0, \cdots, 0, -1, -1)^\top \in \mathbb{R}^M \\ \boldsymbol{\ell}_2 = (4, -1, -1, 0, \cdots, 0, -1, -1)^\top \in \mathbb{R}^N \end{cases}$$
(7.106)

在图7.13所示的灰度图像复原实验中,将低秩拉普拉斯卷积模型中的超参数设置为 $\lambda = 5 \times 10^{-3} MN, \eta = 10^2 \lambda$ 。

7.5 低秩延迟嵌入模型

7.5.1 延迟嵌入矩阵及其性质

给定任意向量 $\boldsymbol{x} = (x_1, x_2, \dots, x_T) \in \mathbb{R}^T$, 同时给定延迟窗口大小 (delay window size) 为 τ , 其中, $\tau \leq T$, 则延迟嵌入 (delay embedding) 矩阵为

$$\mathcal{D}_{\tau}(\boldsymbol{x}) = \begin{vmatrix} x_1 & x_2 & x_3 & \cdots & x_{\tau} \\ x_2 & x_3 & x_4 & \cdots & x_{\tau+1} \\ x_3 & x_4 & x_5 & \cdots & x_{\tau+2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{T-1} & x_T & x_1 & \cdots & x_{\tau-2} \\ x_T & x_1 & x_2 & \cdots & x_{\tau-1} \end{vmatrix} \in \mathbb{R}^{T \times \tau}$$
(7.107)

其中, 符号 $\mathcal{D}_{\tau}(\cdot)$ 表示窗口大小为 τ 的延迟嵌入。

(a) RSE = 10.85% $(\gamma = \lambda, \tau = 1)$

(b) RSE = 10.16% ($\gamma = 10\lambda, \tau = 1$)

(d) RSE = 10.00% ($\gamma = 10\lambda, \tau = 2$)

图 7.13: 基于低秩拉普拉斯卷积模型的 90% 缺失率的灰度图像复原

例 61. 给定向量 $\boldsymbol{x} = (0, 1, 2, 3, 4)^{\top}$, 令 $\tau = 3$, 试写出延迟嵌入矩阵 $\mathcal{D}_{\tau}(\boldsymbol{x})$ 。 解. 根据定义, 向量 x 对应的延迟嵌入矩阵为

$$\mathcal{D}_{3}(\boldsymbol{x}) = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 0 \\ 4 & 0 & 1 \end{bmatrix}$$
(7.108)

对于延迟嵌入矩阵 $\mathcal{D}_{\tau}(\boldsymbol{x}) \in \mathbb{R}^{T \times \tau}$,若其奇异值分解为

$$\mathcal{D}_{\tau}(\boldsymbol{x}) = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\top} = \sum_{r=1}^{\tau} \sigma_r \boldsymbol{u}_r \boldsymbol{v}_r^{\top}$$
(7.109)

则对于向量 x,有

$$\boldsymbol{x} = \frac{1}{\tau} \sum_{r=1}^{\tau} \sigma_r \boldsymbol{u}_r \star \boldsymbol{v}_r = \frac{1}{\tau} \sum_{r=1}^{\tau} \sigma_r \mathcal{F}^{-1}(\mathcal{F}(\boldsymbol{u}_r) \circ \mathcal{F}(\tilde{\boldsymbol{v}}_r))$$
(7.110)

恒成立,其中,向量 \tilde{v}_r 被定义为

$$\tilde{\boldsymbol{v}}_r = (\boldsymbol{v}_r^{\top}, \underbrace{0, \cdots, 0}_{T-\tau})^{\top}, r = 1, 2, \dots, \tau$$
(7.111)

例 62. 给定向量 $x = (0, 1, 2, 3, 4)^{\top}$, 令 $\tau = 3$, 试写出延迟嵌入矩阵 $\mathcal{D}_{\tau}(x)$ 的奇异值分解并 通过公式(7.110)还原 x。

解. 对向量 x 的延迟嵌入矩阵 $D_3(x)$ 进行奇异值分解,有

$$\mathcal{D}_{3}(\boldsymbol{x}) = \begin{bmatrix} -0.212 & 0.365 & -0.024 \\ -0.424 & 0.365 & -0.049 \\ -0.635 & 0.365 & -0.073 \\ -0.504 & -0.548 & 0.654 \\ -0.343 & -0.548 & -0.751 \end{bmatrix} \begin{bmatrix} 8.171 & 0 & 0 \\ 0 & 3.873 & 0 \\ 0 & 0 & 2.870 \end{bmatrix} \begin{bmatrix} -0.560 & -0.610 & -0.560 \\ -0.707 & 0 & 0.707 \\ -0.431 & 0.793 & -0.431 \end{bmatrix}$$
(7.112)

故根据循环卷积定义,可得

$$\begin{aligned} \boldsymbol{x} &= \frac{1}{3} (\sigma_1 \boldsymbol{u}_1 \star \boldsymbol{v}_1 + \sigma_2 \boldsymbol{u}_2 \star \boldsymbol{v}_2 + \sigma_3 \boldsymbol{u}_3 \star \boldsymbol{v}_3) \\ &= \frac{1}{3} \times 8.171 \times \begin{bmatrix} -0.212 \\ -0.424 \\ -0.635 \\ -0.504 \\ -0.343 \end{bmatrix} \star \begin{bmatrix} -0.560 \\ -0.610 \\ -0.560 \end{bmatrix} + \frac{1}{3} \times 3.873 \times \begin{bmatrix} 0.365 \\ 0.365 \\ 0.365 \\ -0.548 \\ -0.548 \end{bmatrix} \star \begin{bmatrix} -0.707 \\ 0 \\ 0.707 \end{bmatrix} \\ &+ \frac{1}{3} \times 2.870 \times \begin{bmatrix} -0.024 \\ -0.049 \\ -0.073 \\ 0.654 \\ -0.751 \end{bmatrix} \star \begin{bmatrix} -0.431 \\ 0.793 \\ -0.431 \end{bmatrix} \\ &= \begin{bmatrix} 1.66 \\ 1.52 \\ 2.00 \\ 2.47 \\ 2.33 \end{bmatrix} + \begin{bmatrix} -0.83 \\ -0.83 \\ 0 \\ 0.83 \\ 0.83 \end{bmatrix} + \begin{bmatrix} -0.83 \\ 0 \\ -0.30 \\ 0.84 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \end{aligned}$$
(7.113)

7.5.2 低秩延迟嵌入模型

由于延迟嵌入矩阵的奇异值分解可写作循环卷积的形式,故可借助这一性质构建低秩延迟嵌入模型⁸。对于任意观测向量 $y \in \mathbb{R}^T$,若被观测元素的索引集合为 Ω ,则低秩延迟嵌入模型的优化问题为

$$\min_{\boldsymbol{w},\boldsymbol{x}} \frac{1}{2} \| \mathcal{P}_{\Omega}(\boldsymbol{y} - \frac{1}{\tau} \boldsymbol{w} \star \boldsymbol{x}) \|_{2}^{2} + \frac{\rho}{2} (\| \boldsymbol{w} \|_{2}^{2} + \| \boldsymbol{x} \|_{2}^{2}) + \frac{\gamma}{2} (\| \boldsymbol{\ell} \star \boldsymbol{w} \|_{2}^{2} + \| \boldsymbol{\ell} \star \boldsymbol{x} \|_{2}^{2}) + \frac{\lambda}{2} \| \boldsymbol{i}_{\tau} \circ \boldsymbol{x} \|_{2}^{2}$$

$$(7.114)$$

其中, $\boldsymbol{w}, \boldsymbol{x} \in \mathbb{R}^T$ 为因子向量 (factor vector); $\boldsymbol{\ell} = (1, -1, 0, \cdots, 0)^\top \in \mathbb{R}^T$ 为拉普拉斯核; 由 于向量 \boldsymbol{x} 仅有前 τ 个元素为有效参数, 故构造向量 $\boldsymbol{i}_{\tau} = (\underbrace{0, \cdots, 0}_{\tau}, \underbrace{1, \cdots, 1}_{T-\tau})^\top$ 使得向量 \boldsymbol{x} 的

最后 $T - \tau$ 个元素尽可能接近于 0。

为解决低秩延迟嵌入模型的优化问题,可使用 Majorization-Minimization 算法,该算法 采用如下迭代过程:

⁸Takayama, Hiromu, and Tatsuya Yokota (2022). Fast Signal Completion Algorithm with Cyclic Convolutional Smoothing. Proceedings of 2022 APSIPA Annual Summit and Conference.

在第 k 次迭代中, 给定变量 {
$$\boldsymbol{w}^{(k)}, \boldsymbol{x}^{(k)}$$
} 时, 构造中间函数 $h(\boldsymbol{w}, \boldsymbol{x} \mid \boldsymbol{w}^{(k)}, \boldsymbol{x}^{(k)})$, 即

$$h(\boldsymbol{w}, \boldsymbol{x} \mid \boldsymbol{w}^{(k)}, \boldsymbol{x}^{(k)}) = \frac{1}{2} \|\mathcal{P}_{\Omega}(\boldsymbol{y} - \frac{1}{\tau}\boldsymbol{w} \star \boldsymbol{x})\|_{2}^{2} + \frac{1}{2} \|\mathcal{P}_{\Omega}^{\perp}(\frac{1}{\tau}\boldsymbol{w}^{(k)} \star \boldsymbol{x}^{(k)} - \frac{1}{\tau}\boldsymbol{w} \star \boldsymbol{x})\|_{2}^{2}$$

$$+ \frac{\rho}{2} (\|\boldsymbol{w}\|_{2}^{2} + \|\boldsymbol{x}\|_{2}^{2}) + \frac{\gamma}{2} (\|\boldsymbol{\ell} \star \boldsymbol{w}\|_{2}^{2} + \|\boldsymbol{\ell} \star \boldsymbol{x}\|_{2}^{2})$$

$$+ \frac{\lambda}{2} (\|\boldsymbol{i}_{\tau} \circ \boldsymbol{x}\|_{2}^{2} + \|(\mathbb{1}_{T} - \boldsymbol{i}_{\tau}) \circ (\boldsymbol{x} - \boldsymbol{x}^{(k)})\|_{2}^{2})$$
(7.115)

因此,不妨构造如下的中间变量:

$$\boldsymbol{z} = \mathcal{P}_{\Omega}(\boldsymbol{y}) + \mathcal{P}_{\Omega}^{\perp}(\frac{1}{\tau}\boldsymbol{w}^{(k)} \star \boldsymbol{x}^{(k)})$$
(7.116)

$$\boldsymbol{v} = (\mathbb{1}_T - \boldsymbol{i}_\tau) \circ \boldsymbol{x}^{(k)} \tag{7.117}$$

• 在第 k 次迭代中, 求解变量 {w,x} 的解析解:

$$\boldsymbol{w}^{(k+1)}, \boldsymbol{x}^{(k+1)} = \operatorname*{arg\,min}_{\boldsymbol{w}, \boldsymbol{x}} h(\boldsymbol{w}, \boldsymbol{x} \mid \boldsymbol{w}^{(k)}, \boldsymbol{x}^{(k)})$$
(7.118)

求解变量 w = x的解析解时,不妨令 $\hat{h}(\hat{w}, \hat{x} \mid \hat{w}^{(k)}, \hat{x}^{(k)})$ 表示傅立叶变换之后的目标函数,表达式为

$$\hat{h}(\hat{\boldsymbol{w}}, \hat{\boldsymbol{x}} \mid \hat{\boldsymbol{w}}^{(k)}, \hat{\boldsymbol{x}}^{(k)}) = \frac{1}{2T} \|\hat{\boldsymbol{z}} - \frac{1}{\tau} \hat{\boldsymbol{w}} \circ \hat{\boldsymbol{x}}\|_{2}^{2} + \frac{\rho}{2T} (\|\hat{\boldsymbol{w}}\|_{2}^{2} + \|\hat{\boldsymbol{x}}\|_{2}^{2}) + \frac{\gamma}{2T} (\|\hat{\boldsymbol{\ell}} \circ \hat{\boldsymbol{w}}\|_{2}^{2} + \|\hat{\boldsymbol{\ell}} \circ \hat{\boldsymbol{x}}\|_{2}^{2}) + \frac{\lambda}{2T} \|\hat{\boldsymbol{v}} - \hat{\boldsymbol{x}}\|_{2}^{2}$$
(7.119)

在该函数中,对 ŵ 求偏导数,有

$$\frac{\partial \hat{h}}{\partial \hat{\boldsymbol{w}}} = \frac{1}{T} \left(\frac{1}{\tau} \hat{\boldsymbol{w}} \circ \hat{\boldsymbol{x}} - \hat{\boldsymbol{z}} \right) \circ \left(\frac{1}{\tau} \hat{\boldsymbol{x}} \right) + \frac{\rho}{T} \hat{\boldsymbol{w}} + \frac{\gamma}{T} \hat{\boldsymbol{\ell}} \circ \hat{\boldsymbol{w}} \circ \hat{\boldsymbol{\ell}}
= \frac{1}{T} \left(\hat{\boldsymbol{w}} \circ \left(\frac{1}{\tau^2} \hat{\boldsymbol{x}} \circ \hat{\boldsymbol{x}} \right) + \rho \hat{\boldsymbol{w}} + \gamma \hat{\boldsymbol{w}} \circ \hat{\boldsymbol{\ell}} \circ \hat{\boldsymbol{\ell}} - \frac{1}{\tau} \hat{\boldsymbol{z}} \circ \hat{\boldsymbol{x}} \right)$$
(7.120)

令 $\frac{\partial \hat{h}}{\partial \hat{w}} = 0$, 则 \hat{w} 的解析解为

$$\hat{\boldsymbol{w}} = \left(\frac{1}{\tau}\hat{\boldsymbol{z}}\circ\hat{\boldsymbol{x}}\right) \oslash \left(\frac{1}{\tau^2}\hat{\boldsymbol{x}}\circ\hat{\boldsymbol{x}} + \rho \mathbb{1}_T + \gamma\hat{\boldsymbol{\ell}}\circ\hat{\boldsymbol{\ell}}\right)$$
(7.121)

其中,对该解析解进行傅立叶逆变换即可得到变量 w 的更新公式。

同理,对 **x** 求偏导数,有

$$\frac{\partial h}{\partial \hat{x}} = \frac{1}{T} \left(\frac{1}{\tau} \hat{w} \circ \hat{x} - \hat{z} \right) \circ \left(\frac{1}{\tau} \hat{w} \right) + \frac{\rho}{T} \hat{x} + \frac{\gamma}{T} \hat{\ell} \circ \hat{x} \circ \hat{\ell} + \frac{\lambda}{T} (\hat{x} - \hat{v})
= \frac{1}{T} \left(\hat{x} \circ \left(\frac{1}{\tau^2} \hat{w} \circ \hat{w} \right) + \rho \hat{x} + \gamma \hat{x} \circ \hat{\ell} \circ \hat{\ell} + \lambda \hat{x} - \frac{1}{\tau} \hat{z} \circ \hat{w} - \lambda \hat{v} \right)$$
(7.122)

令 $\frac{\partial \hat{h}}{\partial \hat{x}} = \mathbf{0}$, 则 \hat{x} 的解析解为

$$\hat{\boldsymbol{x}} = \left(\frac{1}{\tau}\hat{\boldsymbol{z}}\circ\hat{\boldsymbol{w}} + \lambda\hat{\boldsymbol{v}}\right) \oslash \left(\frac{1}{\tau^2}\hat{\boldsymbol{w}}\circ\hat{\boldsymbol{w}} + (\rho+\lambda)\mathbb{1}_T + \gamma\hat{\boldsymbol{\ell}}\circ\hat{\boldsymbol{\ell}}\right)$$
(7.123)

其中,对该解析解进行傅立叶逆变换即可得到变量 x 的更新公式。

算法7给出了低秩延迟嵌入模型的具体实现过程。

例 63. 时间序列重构。

7.6 延伸内容:图片行列缺失复原

参考资料

Algorithm 7 低秩延迟嵌入模型

Input: 观测向量 $\boldsymbol{y} \in \mathbb{R}^{T}$, 被观测元素的索引集合 Ω , 超参数 { $\rho, \gamma, \lambda, \tau$ }.

Output: 重构出来的向量 $\frac{1}{\tau} \boldsymbol{w} \star \boldsymbol{x} \in \mathbb{R}^T$.

- 1: 对变量 {w,x} 进行初始化;
- 2: for i = 0 to 最大迭代次数 do
- 3: 根据公式(7.116)计算 z;
- 4: 根据公式(7.117)计算 v;
- 5: 根据公式(7.121)计算 ŵ, 通过傅立叶逆变换得到变量 w;
- 6: 根据公式(7.123)计算 *x*,通过傅立叶逆变换得到变量 *x*;
- 7: 计算 $\frac{1}{\tau} \boldsymbol{w} \star \boldsymbol{x};$
- 8: end for

第八章 低秩时序张量模型

8.1 平滑张量分解

1. Temporal collaborative filtering with Bayesian probabilistic tensor factorization

2. Smooth PARAFAC Decomposition for Tensor Completion

8.2 循环张量核范数

8.3 三维低秩拉普拉斯卷积模型

第九章 核范数最小化问题

9.1 矩阵核范数最小化

例 64. 现有循环矩阵核范数最小化问题为

$$\min_{\boldsymbol{x}} \|\mathcal{C}(\boldsymbol{x})\|_* + \frac{\lambda}{2} \|\boldsymbol{x} - \boldsymbol{z}\|_2^2$$
(9.1)

其中, $z \in \mathbb{R}^T$ 为已知变量; $x \in \mathbb{R}^T$ 为待优化变量。 若令 $X = C(x) \in \mathbb{R}^{T \times T}$ 与 $Z = C(z) \in \mathbb{R}^{T \times T}$,构造如下核范数最小化问题:

$$\min_{\boldsymbol{X}} \|\boldsymbol{X}\|_* + \frac{\lambda}{2T} \|\boldsymbol{X} - \boldsymbol{Z}\|_F^2$$
(9.2)

此时,Z为待优化变量。

不妨令 $z = (0, 1, 2, 3, 4)^{\top}$ 与 $\lambda = 2$, 试写出公式(9.2)的最优解。

解. 根据循环矩阵定义,有

$$\boldsymbol{Z} = \mathcal{C}(\boldsymbol{z}) = \begin{bmatrix} 0 & 4 & 3 & 2 & 1 \\ 1 & 0 & 4 & 3 & 2 \\ 2 & 1 & 0 & 4 & 3 \\ 3 & 2 & 1 & 0 & 4 \\ 4 & 3 & 2 & 1 & 0 \end{bmatrix}$$
(9.3)

9.2 张量多重核范数最小化

9.3 张量核范数最小化

9.4 延伸内容:截断核范数与加权核范数

第十章 贝叶斯矩阵分解与张量分解

10.1 马尔可夫链蒙特卡洛算法

- 10.2 概率矩阵分解
- 10.3 贝叶斯矩阵分解
- 10.4 贝叶斯张量分解

第十一章 张量链式分解与环式分解

tensor train decomposition tensor ring decomposition

参考文献

- Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review, 51(3):455–500, 2009.
- Nicholas D Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evangelos E Papalexakis, and Christos Faloutsos. Tensor decomposition for signal processing and machine learning. *IEEE Transactions on Signal Processing*, 65(13):3551–3582, 2017.
- Charles F Van Loan and Nikos Pitsianis. *Approximation with Kronecker products*. Springer, 1993.
- Marawan Gamal Abdel Hameed, Marzieh S Tahaei, Ali Mosleh, and Vahid Partovi Nia. Convolutional neural network compression through generalized kronecker product decomposition. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pages 771–779, 2022.
- Rong Chen, Han Xiao, and Dan Yang. Autoregressive models for matrix-valued time series. Journal of Econometrics, 222(1):539–560, 2021.
- Xinyu Chen, Chengyuan Zhang, Xiaoxu Chen, Nicolas Saunier, and Lijun Sun. Discovering dynamic patterns from spatiotemporal data with time-varying low-rank autoregression. arXiv preprint arXiv:2211.15482, 2022a.
- Guangcan Liu and Wayne Zhang. Recovery of future data via convolution nuclear norm minimization. *IEEE Transactions on Information Theory*, 69(1):650–665, 2022.
- Xinyu Chen, Zhanhong Cheng, Nicolas Saunier, and Lijun Sun. Laplacian convolutional representation for traffic time series imputation. arXiv preprint arXiv:2212.01529, 2022b.