Applied Numerical Methods for Civil Engineering

CGN 3405 - 0002
Week 4: Introduction to Python Programming: Part Il
Xinyu Chen

Assistant Professor

University of Central Florida

Python Functions
©00000000000000

Quizzes Now!

® Today’s participation (ungraded survey): Please check out
“Class Participation Quiz 8"
Time slot: 2:30PM — 3:00PM

on Canvas.

2/64

Python Functions
0®0000000000000

Python Functions

Why use functions?
® Reusability: Write once, use many times
® Modularity: Break code into manageable blocks
® Abstraction: Hide complexity behind simple interfaces

® Testing & Debugging: Isolate and test individual components

3/64

Python Functions
00e000000000000

Basic Function Syntax

1 def function_name (parameters):

2 """Optional docstring"""
3 # Function body
4 return value # Optional

4/64

Python Functions
000@00000000000

Basic Function Syntax

Engineering example.

® Definition of normal stress:

F
o= —
A
F =5000 N
1 def normal_stress(F, A):
2 return F / A
where

o F =5000 N (force)
o A =0.01 m? (area)

1 force = 5000 # N

2 area = 0.01 # m~2 A =0.01 m?
3 stress = normal_stress(force, area)

4 print('stress = {}'.format(stress))

5/64

Python Functions
0000@0000000000

Lambda Functions

Quick, one-line functions:

® Example: Quadratic function

2
y==x
Syntax: lambda arguments: expression
square = lambda x: x**2
print (square (5)) # 25

Equivalent def function:
def square_func(x):

return x**2
print (square_func(5)) # 25

0 N oA W N

6/64

Python Functions
00000@000000000

Lambda Functions

Engineering example.

® Definition of normal stress:

F = 5000 N

1 stress_lam = lambda F, A: F / A

where

o F =5000 N (force)
o A =0.01 m? (area)

1 force = 5000 # N

2 area = 0.01 # m~2

3 stress = stress_lam(force, area) fi‘_'0‘01 m
4 print ('stress = {}'.format(stress))

7/64

Python Functions
000000@00000000

Lambda Functions

® Example:

1 import numpy as np
3 g = lambda r: np.pi * x**2 / 4

® Evaluate it for r = 1.5 and r = 2.78

1 print (g(1.5))
2 print (g(2.78))

8/64

Python Functions
0000000@0000000

Multiple Returns

® Given az® 4+ bz + ¢ =0 (a # 0), the quadratic formula is

. —b+Vb?% — 4ac
- 2a

import numpy as np

def quad_formula(a, b, c):
term = np.sqrt(b**2 - 4xax*c)
x1 = (-b + term) / (2xa)
x2 = (-b - term) / (2xa)
return x1, x2

N oA W N

® Case study: Solve 92° + 3z —2 = (3x — 1)(3z +2) = 0.

i1a, b, ¢c =9, 3, -2

2 x1, x2 = quad_formula(a, b, c)
3 print(x1)

4 print (x2)

9/64

Python Functions
00000000@000000

Recursive Functions

Functions that call themselves
® Factorial of a non-negative integer n is the product of all positive
integers less than or equal to n:
nl=nxn-1)xn—-2)x---x3x2x1
1 ifn=1
=qnxn-1)! ifn>1
factorial
1 def factorial(m):
2 f =1
3 for i in range(l, n + 1):
4 f =f % i
5 return f

® Toy example: 5! =5x4x3x2x1=120

1 print(factorial(5))

10/64

Python Functions
000000000 e00000
Recursive Functions

Functions that call themselves

® Factorial of a non-negative integer n is the product of all positive
integers less than or equal to n:

nl=nxn-1)xn—-2)x---x3x2x1

1 ifn=1

=qnxn-1)! ifn>1

factorial
1 def factorial_r(n):
2 if n == 0:

3 return 1
4
5

else:
return n * factorial_r(n-1)

® Toy example: 5! =5x4x3x2x1=120

1 print(factorial_r(5))

11/64

Python Functions
000000000080000

Factorial with NumPy

® Factorial of a non-negative integer n is the product of all positive
integers less than or equal to n:

nl=nxn—-1)xn—-2)x---x3x2x1

1 def factorial_numpy(n):
2 if n == O0:

3 return 1

4 else:

5

return np.prod(np.arange(1l, n+1))

® Toy example: 5! =5x4x3x2x1=120

1 print(factorial_numpy (5))
2 print (np.prod(np.arange (1, 6)))

12/64

Python Functions
000000000080000

Factorial with NumPy

® Factorial of a non-negative integer n is the product of all positive
integers less than or equal to n:

nl=nxn—-1)xn—-2)x---x3x2x1

1 def factorial_numpy(n):
2 if n == O0:

3 return 1

4 else:

5

return np.prod(np.arange(1l, n+1))

® Toy example: 5! =5x4x3x2x1=120

1 print(factorial_numpy (5))
2 print (np.prod(np.arange (1, 6)))

® Any other built-in function?

1 import math

3 print(math.factorial (5))

13/64

Python Functions
00000000000@000

Approximation for Sine Function

Taylor series expansion for sin(z):

® Formula

® Denominator is factorial of odd numbers

® More terms = better approximation

14/64

Python Functions
00000000000@000

Approximation for Sine Function

Taylor series expansion for sin(z):

® Formula

® Denominator is factorial of odd numbers
® More terms = better approximation
® Python programming:
2n—1

“+oo
sin(z) = Z(—n”*lm

n starts from 1

2n+1

:g 2n—|—1)

n starts from O (Python!)

15 /64

Python Functions
000000000000800

Approximation for Sine Function

® Python programming:

) +oo p2ntl
sin(z) = nzzo(fl) Gnr il

n starts from O (Python!)

1 import numpy as np

2

3 def sin_taylor(x, num_term):

4 result = 0

5 for n in range(num_term):

6 # Term index: O, 1, 2, ... corresponds to x71,
x~3, x°5b,

7 exp = 2*n + 1

8 factorial = np.prod(np.arange(l, exp + 1))

9 result += ((-1) **x n) * (x ** exp) / factorial

10 return result

16 /64

Python Functions
0000000000000 e0
Approximation for Sine Function

Test case: sin(0.9)
® Ground-truth value:
1 print(np.sin(0.9)) # 0.7833269096274834
® 1 term:

1 print(sin_taylor (0.9, 1)) # 0.9

17/64

Python Functions
0000000000000 e0
Approximation for Sine Function

Test case: sin(0.9)
® Ground-truth value:

1 print(np.sin(0.9)) # 0.7833269096274834

® 1 term:

1 print(sin_taylor (0.9, 1)) # 0.9

® 2 terms:

1 print(sin_taylor (0.9, 2)) # 0.7785

® 3 terms:

1 print(sin_taylor (0.9, 3)) # 0.78342075

® 4 terms:

1 print(sin_taylor (0.9, 4)) # 0.7833258498214286

® 5 terms:

1 print(sin_taylor (0.9, 5)) # 0.7833269174484375

18/64

Python Functions
000000000000000

Quick Summary

Monday’s Class:

® Basic function syntax

Lambda function

Multiple returns
® Recursive functions

® Two examples: Factorial and Taylor series expansion for sin(x)

19/64

Introduction to NumPy
©00000000000000000

Quizzes Now!

® Today’s participation (ungraded survey): Please check out
“Class Participation Quiz 9"
Time slot: 2:30PM — 3:00PM

on Canvas.

20/64

Introduction to NumPy
0@0000000000000000

Norms

What are “norms” in mathematics?
® Mathematical rulers for measuring vector and matrix properties
® Distance measures in multi-dimensional space

® Essential tools for error analysis, optimization, and stability

Why civil engineers needs “norms”?
® Error quantification in numerical solutions
® Convergence checking in iterative methods
® Optimization criteria (least squares)

® Stability analysis of structures

21/64

Introduction to NumPy
00®000000000000000

Norms

Some important norms:
® /i-norm
® /y-norm (vector) vs. Frobenius norm (matrix)

® (. ,-norm

22/64

Introduction to NumPy
000@00000000000000
f/1-Norm

The #1-norm measures the total absolute value.

® Mathematical expression:

n
2l = ||
1=1

for any vector
T
T = (‘T‘.lva?"‘ ,{En)

23/64

Introduction to NumPy
000@00000000000000
f/1-Norm

The #1-norm measures the total absolute value.

® Mathematical expression:

n
2l = ||
1=1

for any vector

T
T = (IIT17.’L'2,"‘ 7xn)
® Example:
-

a=(1,23,4) = |ali=10
1 import numpy as np
2
3 ell_1 = lambda x: np.sum(np.abs(x))
4 a = np.arange(l, 5)
5 print (a)
6 print (ell_1(a))

® How to use NumPy?

1 print(np.linalg.norm(a, 1))

24 /64

Introduction to NumPy
0000®0000000000000

f/1-Norm

The #1-norm is also called Manhattan norm.

® Mathematical expression:

n

el = ||

=1

for any vector
-
T = (17171172,"' ,l’n)

® “Walking along city blocks” - only horizontal/vertical moves

B
8
g

+

Is Ze é?

I

T4 §~

) 3 t
8

®
A T om a4

25 /64

Introduction to NumPy
00000@000000000000

f/1-Norm

® Physical meaning in engineering:

o Total absolute error across all measurements
o Resource consumption (total material used)
o Cost summation across multiple components

® Error analysis: Mean Absolute Error (MAE) such that

n

1 1« 1 .
MAE = —|lells = EZM = ;Z | — @i

i=1 i=1
with the errors:
& = T; — Xy i:1,2,...,n
~~ ~~
approximate true

® |t represents the “average” absolute deviation in the same units as the
data

26 /64

Introduction to NumPy
000000@00000000000
f/1-Norm

Example: Deflection

® Step-by-step computations:

_ 102/ +]-04[+[03]+]-02[+]03] _

MAE
5

28

import numpy as np

True vs measured deflections (mm)
true = np.array([12.3, 15.7, 18.2, 14.9, 16.5])
measured = np.array([12.5, 15.3, 18.5, 14.7, 16.8])

Absolute errors at each point
abs_errors = np.abs(measured - true)

© © N o U r WwN R

L1 norm of error = total absolute error
total_abs_error = np.sum(abs_errors)

==
= o

® Using NumPy

1 np.linalg.norm(measured - true, 1)

27 /64

Introduction to NumPy
0000000@0000000000

f5-Norm

® Mathematical expression:

for any vector

28/64

Introduction to NumPy
0000000@0000000000

f5-Norm

® Mathematical expression:

for any vector

® Example:
a = (1,2,3,4)T = ||a||2: 12 4+ 22 4+ 32 442 :\/%
import numpy as np

ell_2 = lambda x: np.sqrt(np.sum(x ** 2))
a = np.arange (1, 5)

print (a)

print (ell_2(a))

oG R W N

® How to use NumPy?

1 print(np.linalg.norm(a, 2))

29/64

Introduction to NumPy
000000008000000000

f5-Norm

Intuitive understanding?

® (y-norm is the Euclidean distance in space.

® Vectors @ = (z1,22)" vs. @ = (1,22, 23) "

Izl = Vi + 23

30/64

Introduction to NumPy
000000008000000000

f5-Norm

Intuitive understanding?
® (y-norm is the Euclidean distance in space.

® Vectors @ = (z1,22)" vs. @ = (1,22, 23) "

Izl = Vi + 23

31/64

Introduction to NumPy
000000000800000000

f5-Norm

® |If forces F,, Fy, F, act on a joint, resultant force magnitude:

Fresultant: F12+Fy2+Fz2

® Example: F, =3,F, =4,F, =12 kN, then

Flresuttant = 32 + 42 + 122 = 13kN

32/64

Introduction to NumPy
000000000080000000

f5-Norm

Example: F, = 3.5,F, = 2.1, F, = 4.8 kN, then
Fresultant = 3.52 + 2.12 + 4.82 =~ 6.30kN

import numpy as np

1
2
3 F = np.array([3.5, 2.1, 4.8])
4 print(np.linalg.norm(F, 2))

z

33/64

Introduction to NumPy
000000000008000000

f/1-Norm vs. /5-Norm

In a city grid, walking from (0, 0) to (3,4):

B
g
X7

+

x5 | F6 &

L

T4 ;{

T2 3 t
8

@
A Tty a3+

® /, distance = |3| + |4| = 7 blocks
® /, distance = v/3%2 4+ 42 = 5 blocks (not walkable!)

34/64

Introduction to NumPy
000000000000800000

Frobenius Norm

® />-norm:

for any vector

® Frobenius norm:

for any matrix

Ti1 T2 - Tln
Ta1 T2z Ton

X =1 . .) . m rows & m columns
Tml Tm2 e Tmn

35/64

Introduction to NumPy
000000000000080000

Frobenius Norm

® Example:
A— B ﬂ = |Alr=v12+22+32+42 =30

import numpy as np

frob = lambda X: np.sqrt(np.sum(X *x* 2))
A = np.array([[1, 2], [3, 411)
print (frob(A))

[I N T N

® How to use NumPy?

1 print(np.linalg.norm(A, 'f'))

36/64

Introduction to NumPy
000000000000008000

f~o-Norm

® Mathematical expression of {o-norm (“Worst-case” or “maximum”
distance):
[®llcc = max{|z1], |22, ., |zal}

® Example:

import numpy as np

a = np.array([-1, 2, -3, 4])
print (np.linalg.norm(a, np.inf))

AW N =

® Write a function?

1 ell_inf = lambda x: np.max(np.abs(x))
2 print (ell_inf (a))

® Physical meaning in engineering:

o Maximum stress in a structure

o Peak deflection in a beam

o Worst-case error in measurements

o Safety factor based on extreme values

37/64

Introduction to NumPy
000000000000000®00

f~o-Norm

Example: Worst-case prediction error
® Focuses only on the worst-case element - conservative design
® Python codes

1 # Errors in temperature predictions at different
locations
errors = np.array([-1.2, 0.8, -2.1, 1.5, -0.3, 1.9])

L_infinity norm = maximum absolute error
max_abs_error = np.max(np.abs(errors))
worst_location = np.argmax(np.abs(errors))

o g~ w N

® Maximum absolute error: -2.1

® | ocation: the 3rd value

38/64

Introduction to NumPy
0000000000000000e0

f~o-Norm

Example: Safety factor based on extreme values

® In design codes, the maximum stress must not exceed allowable stress:
Omax = max{loi],[oz], ...} = [lo e
® |f measured stresses = [120, —150, 130] MPa,
o]l = 150 MPa

Compare to allowable stress (e.g., 200 MPa) for safety.

39/64

Introduction to NumPy
00000000000000000e

Quick Summary

Wednesday’s Class:
® /i-norm: Sum of absolute values — total deviation
® (y-norm: magnitude in space
® (.-norm: Maximum absolute value — worst-case measure

® Frobenius Norm: For matrices, like £2-norm for vectors

40/64

Matrix Computations with NumPy
0000000000000 000

Assignment 2 & Exam 1 (Coding Part)

Assignment 2:
® Students:

o Complete your coding tasks on Colab
o Comment the question number (e.g., # Question 2.2)
o Download “.ipynb” from Colab

® TA's task:

o Upload your “.ipynb” to Colab
o Run all codes
o Grade your results

Exam 1 (coding part):
® Format: Give you Python codes, please write down the output

® Review class: Give 10-15 sample questions (some of them will be
selected for test)

41/64

Matrix Computations with NumPy
0000000000000 000

Quizzes Now!

® Today's participation (ungraded survey): Please check out
“Class Participation Quiz 10"
Time slot: 2:30PM - 3:00PM

on Canvas.

® Online engagement (graded quizzes)
“Quiz 10"
Deadline: 11:59PM, February 6, 2026

on Canvas.

42 /64

o G R W N =

Matrix Computations with NumPy
0000000000000 000

Inner Product

Mathematical expression:

(@y)=a'y=>) zy
i=1

T = (217171’27"' 71:”)T
Y=y)"

for any vectors

Example:
z=(1,234" y=(6789"

= (x,y) =1x6+2x7+3x8+4x9=280
import numpy as np
inner = lambda x, y: np.sum(x * y)
x = np.arange(l, 5)
y = np.arange (6, 10)
print (inner (x, y))

43/64

Matrix Computations with NumPy
0008000000000 000

Inner Product
® Mathematical expression:
n
(@y)=a'y=> zy
=1
for any vectors

y=(y,y2, " Yn)

{m = (;1;1’1-2’ N ,ZEn)T

® Example:

x=(1,234)" y=(67809)"
= (2,y)=1x6+2xT7+3x8+4x9=280

® How to use NumPy?

1 print(np.inner (x, y))

® QOther options?

1 print(x @ y)

44 /64

Matrix Computations with NumPy
0000@00000000000

Inner Product

For any vector
-
Tr = (331,332,"' 73:71)
what is the inner product (z, x)?
import numpy as np

x = np.arange (1, 10)
print (np.inner(x, x))

45/64

E N

Matrix Computations with NumPy
0000@00000000000

Inner Product

For any vector
-
Tr = (331,332,"' 73:71)
what is the inner product (z, x)?

import numpy as np

x = np.arange (1, 10)
print (np.inner(x, x))

Recall that

n
(@) =z a2 = |3
=1

print (np.linalg.norm(x, 2) ** 2)

46/64

Matrix Computations with NumPy
0000080000000 000

Outer Product

® Mathematical expression:

x1 T1Y1 T1Y2 T1Yn

T T2 T2Y1 T2Y2 o T2Yn
ry = : [yl Y2 e yn} -

Im ImlY1 ITmlY2 e ITmYn

® Example (column vector x row vector = matrix):

1x4 1x5 4 5
z=(1,2,3)" y=45" = =xy =|[2x4 2x5|=|8 10
3x4 3x5 12 15

! import numpy as np

2

3 x = np.arange (1, 4)
4y = np.arange(4, 6)

5 print (np.outer(x, y))

47/64

Matrix Computations with NumPy
000000@000000000

Kronecker Product ®

® Mathematical expression:
r11Y r12Y 1Y
1Y w22Y - x122Y
X®RY = . .) .
-TmIY meY e mmnY
® Example:
1 2 5 6 7
X7|:3 4:| Y7|:8 9 10:|
1 import numpy as np
2
3 X = np.array ([[1, 2], [3, 41]1)
4 Y = np.array([[5, 6, 71, [8, 9, 1011)
5 print (np.kron(X, Y))

48/64

Matrix Computations with NumPy
0000000 e00000000

Kronecker Product ®

® Verify that the Kronecker product of

1 2 5 6 7
X‘{s 4} Y‘{s 9 10}

'1X{5 6 7} 2X{5 6 7}
XoY — 8 9 10 8 9 10
SXF 6 7} 4X{5 6 7}
"7 8 9 10 8 9 10

5 6 7 10 12 14
8§ 9 10 16 18 20
15 18 21 20 24 28
24 27 30 32 36 40

® Size: 4 rows & 6 columns

49/64

0000000080000 000
Positive Definite Matrix

Revisit quadratic functions y = az?:

If @ > 0, then it always holds that az? > 0 for any x # 0.

50/64

Matrix Computations with NumPy
000000000 e000000

Positive Definite Matrix

Extension from y = az® to y = x| Ax:

If A is a positive definite matrix, then it always holds that =" Az > 0 for any

x # 0.

51/64

Matrix Computations with NumPy
000000000 e000000

Positive Definite Matrix

Extension from y = az® to y = x| Ax:

If A is a positive definite matrix, then it always holds that =" Az > 0 for any

x # 0.

® Example: Is A = [(1) (1)] a positive definite matrix?

® Solution: For any nonzero vector @ = (achacz)-r, we have

o matrix-vector multiplication:

o inner product:

a:T(Aa:) = [1‘1 mg] |:$1:| = wf -|— CC% > 0
T2

So A is a positive definite matrix.
52/64

Matrix Computations with NumPy
000000000000 000

Positive Definite Matrix

2 -1 0
® Example: Is A= |—1 2 —1| a positive definite matrix?
0o -1 2
® Solution: For any nonzero vector & = (1, x2,23) ', we have
o matrix-vector multiplication:
2 -1 0 T 221 — X2

Ax = |—-1 2 —=1| |z2 —x1 + 2212 — T3
0 —1 2 €3 —z2 + 223

53/64

Matrix Computations with NumPy
000000000000 000

Positive Definite Matrix

2 -1 0

® Example: Is A= |—1 2 —1| a positive definite matrix?
0o -1 2

® Solution: For any nonzero vector & = (1, x2,23) ', we have

o matrix-vector multiplication:

2 -1 0 T 2x1 — X2
Ar=|—-1 2 —1| |x2| = |—21 + 222 — 23
0 —1 2 T3 —Z2 + 2:1?3

o inner product:

:z:T(Aac) =1z1(2x1 — x2) + w2 (—x1 + 222 — x3) + x3(—22 + 223)
= 295% — 2x122 + 2x§ — 2x0w3 + 2m§
=i + (21— x2)° 4 (22 — 3)° + 23 >0

So A is a positive definite matrix.

54 /64

Matrix Computations with NumPy
00000000000 e0000

Angle between Two Vectors

Building connection between inner product and vector's £2-norm:

® Mathematical expression:

-
a'b
cos(f) = ——
llall2 - [|b]l2
for any vectors
_ T _ T
a—(al,GQ,"',an) b_(blab27""b’ﬂ)

® Cosine function:

I
ME]

55/64

Matrix Computations with NumPy
000000000000 e000

Angle between Two Vectors

® Mathematical expression:

a'b

cos(f) = ———
©) = Tal Tl

® Proof (optional)

o From geometry:
la —bl3 = llallz + [1b]3 — 2[lall2 - [|b]l2 - cos(6)
o From algebra:
la = bl3 = [lal3 + b)) — 2a"b

o Solve for cos(6)

56 /64

0000000000000 e00
Angle between Two Vectors

® Mathematical expression:
a’b

)= ———
<os®) = [all, - ToT

® Example: Given @ = (1,1)" and b= (2,0)", we have
1x24+1x0 2 1

cos(0) = NS TR =

7\/§><2:ﬁ
)

(L1

@0

57/64

Matrix Computations with NumPy
0000000000000 0e0

Angle between Two Vectors

1 2 -1 0
® Example: For vector x = |2| and matrix A= [-1 2 -1},
1 0o -1 2

compute the angle between x and Ax.

® Matrix-vector multiplication:

2 -1 o]t 0
Az=|-1 2 —1| 2] =2
0 -1 2|1 0
® Angle:
cos(0) = z' (Az) 1x0+2x241x%0 V6
lzll2 - [[Az[l2 ~ V12422 + 12 x V02 +224+02 3

import numpy as np

A = np.array([[2, -1, 0], [-1, 2, -11, [0, -1, 2]11)
theta = np.arccos(x @ A @ x / (np.linalg.norm(x, 2) * np.
linalg.norm(A @ x, 2)))

1

2

3 x = np.array([1, 2, 1])
4

5

58 /64

Matrix Computations with NumPy
0000000000000 00e

Angle between Two Vectors

1 0
® Example: For vector & = [2| and matrix Az = |2|, compute the
1 0

angle between x and Ax.

59/64

Introduction to Matplotlib
©0000

Visualization with Python

Using Matlab in Python?

® Matplotlib is a comprehensive library for creating static, animated, and
interactive visualizations in Python.

® import convention

1 import matplotlib.pyplot as plt

60 /64

Introduction to Matplotlib
0@000

Example: Sine Function

® Python code

1 import matplotlib.pyplot as plt

2 import numpy as np

3

4 # Step 1: Generate Data

5 x = np.linspace(0, 2 * np.pi, 50)

6y = np.sin(x)

7

8 # Step 2: Plot

9 plt.plot(x, y, color = 'blue', linestyle = '-')
10

11 # Step 3: Add Labels and Title

12 plt.title('Sine Function', fontsize = 14)

13 plt.xlabel (r'Domain: $x \in [0, 2\pil$', fontsize = 12)
14 plt.ylabel('Amplitude', fontsize = 12)

15

16 # Step 4: Save & Show

17 plt.savefig('sin_func.pdf')

18 plt.show ()

61/64

Introduction to Matplotlib
00000

Example: Sine Function

Sine Function

1.00 A1

0.75 1

0.50 1

0.25 1

0.00 -

Amplitude

—0.25 A1

—0.50 1

—0.75 1

—1.00 1

o A
,_.
N
w
IN
w
o

Domain: x €[0, 2mr]

62/64

Introduction to Matplotlib
00000

Visualization with Python

Recommended material: https://matplotlib.org

63/64

https://matplotlib.org

Introduction to Matplotlib
00000

Quick Summary

Friday’s Class:
® Inner product e.g., (x,y) = 'y
® OQuter product e.g., xy
® Kronecker product ®

® Positive definite matrix

Angle between two vectors

Plot figures in Python

64 /64

	Python Functions
	Introduction to NumPy
	Matrix Computations with NumPy
	Introduction to Matplotlib

