
Applied Numerical Methods for Civil Engineering

CGN 3405 - 0002

Week 4: Introduction to Python Programming: Part II

Xinyu Chen

Assistant Professor

University of Central Florida



Python Functions Introduction to NumPy Matrix Computations with NumPy Introduction to Matplotlib

Quizzes Now!

• Today’s participation (ungraded survey): Please check out

“Class Participation Quiz 8”

Time slot: 2:30PM – 3:00PM

on Canvas.
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Python Functions

Why use functions?

• Reusability: Write once, use many times

• Modularity: Break code into manageable blocks

• Abstraction: Hide complexity behind simple interfaces

• Testing & Debugging: Isolate and test individual components
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Basic Function Syntax

1 def function_name(parameters):

2 """ Optional docstring """

3 # Function body

4 return value # Optional
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Basic Function Syntax

Engineering example.

• Definition of normal stress:

σ =
F

A

1 def normal_stress(F, A):

2 return F / A

where

◦ F = 5000 N (force)
◦ A = 0.01 m2 (area)

1 force = 5000 # N

2 area = 0.01 # m^2

3 stress = normal_stress(force , area)

4 print('stress = {}'.format(stress))

Area
A = 0.01 m2

F = 5000 N
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Lambda Functions

Quick, one-line functions:

• Example: Quadratic function

y = x2

1 # Syntax: lambda arguments: expression

2 square = lambda x: x**2

3 print(square (5)) # 25

4

5 # Equivalent def function:

6 def square_func(x):

7 return x**2

8 print(square_func (5)) # 25
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Lambda Functions

Engineering example.

• Definition of normal stress:

σ =
F

A

1 stress_lam = lambda F, A: F / A

where

◦ F = 5000 N (force)
◦ A = 0.01 m2 (area)

1 force = 5000 # N

2 area = 0.01 # m^2

3 stress = stress_lam(force , area)

4 print('stress = {}'.format(stress))

Area
A = 0.01 m2

F = 5000 N
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Lambda Functions

• Example:

g(r) =
πr2

4

1 import numpy as np

2

3 g = lambda r: np.pi * x**2 / 4

• Evaluate it for r = 1.5 and r = 2.78

1 print(g(1.5))

2 print(g(2.78))
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Multiple Returns

• Given ax2 + bx+ c = 0 (a ̸= 0), the quadratic formula is

x =
−b±

√
b2 − 4ac

2a

1 import numpy as np

2

3 def quad_formula(a, b, c):

4 term = np.sqrt(b**2 - 4*a*c)

5 x1 = (-b + term) / (2*a)

6 x2 = (-b - term) / (2*a)

7 return x1, x2

• Case study: Solve 9x2 + 3x− 2 = (3x− 1)(3x+ 2) = 0.

1 a, b, c = 9, 3, -2

2 x1, x2 = quad_formula(a, b, c)

3 print(x1)

4 print(x2)
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Recursive Functions

Functions that call themselves

• Factorial of a non-negative integer n is the product of all positive
integers less than or equal to n:

n! =n× (n− 1)× (n− 2)× · · · × 3× 2× 1

=


1 if n = 1

n× (n− 1)!︸ ︷︷ ︸
factorial

if n > 1

1 def factorial(n):

2 f = 1

3 for i in range(1, n + 1):

4 f = f * i

5 return f

• Toy example: 5! = 5× 4× 3× 2× 1 = 120

1 print(factorial (5))
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Recursive Functions

Functions that call themselves

• Factorial of a non-negative integer n is the product of all positive
integers less than or equal to n:

n! =n× (n− 1)× (n− 2)× · · · × 3× 2× 1

=


1 if n = 1

n× (n− 1)!︸ ︷︷ ︸
factorial

if n > 1

1 def factorial_r(n):

2 if n == 0:

3 return 1

4 else:

5 return n * factorial_r(n-1)

• Toy example: 5! = 5× 4× 3× 2× 1 = 120

1 print(factorial_r (5))
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Factorial with NumPy

• Factorial of a non-negative integer n is the product of all positive
integers less than or equal to n:

n! =n× (n− 1)× (n− 2)× · · · × 3× 2× 1

1 def factorial_numpy(n):

2 if n == 0:

3 return 1

4 else:

5 return np.prod(np.arange(1, n+1))

• Toy example: 5! = 5× 4× 3× 2× 1 = 120

1 print(factorial_numpy (5))

2 print(np.prod(np.arange(1, 6)))

• Any other built-in function?

1 import math

2

3 print(math.factorial (5))
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Factorial with NumPy

• Factorial of a non-negative integer n is the product of all positive
integers less than or equal to n:

n! =n× (n− 1)× (n− 2)× · · · × 3× 2× 1

1 def factorial_numpy(n):

2 if n == 0:

3 return 1

4 else:

5 return np.prod(np.arange(1, n+1))

• Toy example: 5! = 5× 4× 3× 2× 1 = 120

1 print(factorial_numpy (5))

2 print(np.prod(np.arange(1, 6)))

• Any other built-in function?

1 import math

2

3 print(math.factorial (5))
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Approximation for Sine Function

Taylor series expansion for sin(x):

• Formula

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− x11

11!
+

x13

13!
− x15

15!
+ · · ·

• Denominator is factorial of odd numbers

• More terms = better approximation

• Python programming:

sin(x) =

+∞∑
n=1

(−1)n−1 x2n−1

(2n− 1)!︸ ︷︷ ︸
n starts from 1

=

+∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!︸ ︷︷ ︸
n starts from 0 (Python!)

14 / 64



Python Functions Introduction to NumPy Matrix Computations with NumPy Introduction to Matplotlib

Approximation for Sine Function

Taylor series expansion for sin(x):

• Formula

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− x11

11!
+

x13

13!
− x15

15!
+ · · ·

• Denominator is factorial of odd numbers

• More terms = better approximation

• Python programming:

sin(x) =

+∞∑
n=1

(−1)n−1 x2n−1

(2n− 1)!︸ ︷︷ ︸
n starts from 1

=

+∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!︸ ︷︷ ︸
n starts from 0 (Python!)
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Approximation for Sine Function

• Python programming:

sin(x) =

+∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!︸ ︷︷ ︸
n starts from 0 (Python!)

1 import numpy as np

2

3 def sin_taylor(x, num_term):

4 result = 0

5 for n in range(num_term):

6 # Term index: 0, 1, 2, ... corresponds to x^1,

x^3, x^5, ...

7 exp = 2*n + 1

8 factorial = np.prod(np.arange(1, exp + 1))

9 result += ((-1) ** n) * (x ** exp) / factorial

10 return result
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Approximation for Sine Function

Test case: sin(0.9)

• Ground-truth value:

1 print(np.sin (0.9)) # 0.7833269096274834

• 1 term:

1 print(sin_taylor (0.9, 1)) # 0.9

• 2 terms:

1 print(sin_taylor (0.9, 2)) # 0.7785

• 3 terms:

1 print(sin_taylor (0.9, 3)) # 0.78342075

• 4 terms:

1 print(sin_taylor (0.9, 4)) # 0.7833258498214286

• 5 terms:

1 print(sin_taylor (0.9, 5)) # 0.7833269174484375
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Approximation for Sine Function

Test case: sin(0.9)

• Ground-truth value:

1 print(np.sin (0.9)) # 0.7833269096274834

• 1 term:

1 print(sin_taylor (0.9, 1)) # 0.9

• 2 terms:

1 print(sin_taylor (0.9, 2)) # 0.7785

• 3 terms:

1 print(sin_taylor (0.9, 3)) # 0.78342075

• 4 terms:

1 print(sin_taylor (0.9, 4)) # 0.7833258498214286

• 5 terms:

1 print(sin_taylor (0.9, 5)) # 0.7833269174484375
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Quick Summary

Monday’s Class:

• Basic function syntax

• Lambda function

• Multiple returns

• Recursive functions

• Two examples: Factorial and Taylor series expansion for sin(x)
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Quizzes Now!

• Today’s participation (ungraded survey): Please check out

“Class Participation Quiz 9”

Time slot: 2:30PM – 3:00PM

on Canvas.
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Norms

What are “norms” in mathematics?

• Mathematical rulers for measuring vector and matrix properties

• Distance measures in multi-dimensional space

• Essential tools for error analysis, optimization, and stability

Why civil engineers needs “norms”?

• Error quantification in numerical solutions

• Convergence checking in iterative methods

• Optimization criteria (least squares)

• Stability analysis of structures
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Norms

Some important norms:

• ℓ1-norm

• ℓ2-norm (vector) vs. Frobenius norm (matrix)

• ℓ∞-norm
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ℓ1-Norm

The ℓ1-norm measures the total absolute value.

• Mathematical expression:

∥x∥1 =
n∑

i=1

|xi|

for any vector
x = (x1, x2, · · · , xn)

⊤

• Example:
a = (1, 2, 3, 4)⊤ ⇒ ∥a∥1 = 10

1 import numpy as np

2

3 ell_1 = lambda x: np.sum(np.abs(x))

4 a = np.arange(1, 5)

5 print(a)

6 print(ell_1(a))

• How to use NumPy?

1 print(np.linalg.norm(a, 1))
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ℓ1-Norm

The ℓ1-norm measures the total absolute value.

• Mathematical expression:

∥x∥1 =
n∑

i=1

|xi|

for any vector
x = (x1, x2, · · · , xn)

⊤

• Example:
a = (1, 2, 3, 4)⊤ ⇒ ∥a∥1 = 10

1 import numpy as np

2

3 ell_1 = lambda x: np.sum(np.abs(x))

4 a = np.arange(1, 5)

5 print(a)

6 print(ell_1(a))

• How to use NumPy?

1 print(np.linalg.norm(a, 1))
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ℓ1-Norm

The ℓ1-norm is also called Manhattan norm.

• Mathematical expression:

∥x∥1 =
n∑

i=1

|xi|

for any vector
x = (x1, x2, · · · , xn)

⊤

• “Walking along city blocks” - only horizontal/vertical moves

x1

x2
x3

x4

x5
x6

x7

x1 + x3 + x6

x
2
+

x
4
+

x
5
+

x
7

A

B
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ℓ1-Norm

• Physical meaning in engineering:

◦ Total absolute error across all measurements
◦ Resource consumption (total material used)
◦ Cost summation across multiple components

• Error analysis: Mean Absolute Error (MAE) such that

MAE =
1

n
∥ε∥1 =

1

n

n∑
i=1

|εi| =
1

n

n∑
i=1

|x̂i − xi|

with the errors:

εi = x̂i︸︷︷︸
approximate

− xi︸︷︷︸
true

i = 1, 2, . . . , n

• It represents the “average” absolute deviation in the same units as the
data
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ℓ1-Norm

Example: Deflection

• Step-by-step computations:

MAE =
|0.2|+ | − 0.4|+ |0.3|+ | − 0.2|+ |0.3|

5
≈ 0.28

1 import numpy as np

2

3 # True vs measured deflections (mm)

4 true = np.array ([12.3 , 15.7, 18.2, 14.9, 16.5])

5 measured = np.array ([12.5 , 15.3, 18.5, 14.7, 16.8])

6

7 # Absolute errors at each point

8 abs_errors = np.abs(measured - true)

9

10 # L1 norm of error = total absolute error

11 total_abs_error = np.sum(abs_errors)

• Using NumPy

1 np.linalg.norm(measured - true , 1)
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ℓ2-Norm

• Mathematical expression:

∥x∥2 =

√√√√ n∑
i=1

x2
i

for any vector
x = (x1, x2, · · · , xn)

⊤

• Example:

a = (1, 2, 3, 4)⊤ ⇒ ∥a∥2 =
√

12 + 22 + 32 + 42 =
√
30

1 import numpy as np

2

3 ell_2 = lambda x: np.sqrt(np.sum(x ** 2))

4 a = np.arange(1, 5)

5 print(a)

6 print(ell_2(a))

• How to use NumPy?

1 print(np.linalg.norm(a, 2))
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ℓ2-Norm

• Mathematical expression:

∥x∥2 =

√√√√ n∑
i=1

x2
i

for any vector
x = (x1, x2, · · · , xn)

⊤

• Example:

a = (1, 2, 3, 4)⊤ ⇒ ∥a∥2 =
√

12 + 22 + 32 + 42 =
√
30

1 import numpy as np

2

3 ell_2 = lambda x: np.sqrt(np.sum(x ** 2))

4 a = np.arange(1, 5)

5 print(a)

6 print(ell_2(a))

• How to use NumPy?

1 print(np.linalg.norm(a, 2))
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ℓ2-Norm

Intuitive understanding?

• ℓ2-norm is the Euclidean distance in space.

• Vectors x = (x1, x2)
⊤ vs. x = (x1, x2, x3)

⊤

x

y

∥x∥2 =
√

x2
1 + x2

2

x1

x2

x

y

z

∥x∥2 =
√

x2
1 + x2

2 + x2
3

x1 x2

x3
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ℓ2-Norm

Intuitive understanding?

• ℓ2-norm is the Euclidean distance in space.

• Vectors x = (x1, x2)
⊤ vs. x = (x1, x2, x3)

⊤

x

y

∥x∥2 =
√

x2
1 + x2

2

x1

x2

x

y

z

∥x∥2 =
√

x2
1 + x2

2 + x2
3

x1 x2

x3
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ℓ2-Norm

• If forces Fx, Fy, Fz act on a joint, resultant force magnitude:

Fresultant =
√

F 2
x + F 2

y + F 2
z

• Example: Fx = 3, Fy = 4, Fz = 12 kN, then

Fresultant =
√

32 + 42 + 122 = 13 kN

x

y

z

Fresultant =
√

F 2
x + F 2

y + F 2
z

Fx Fy

Fz
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ℓ2-Norm

• Example: Fx = 3.5, Fy = 2.1, Fz = 4.8 kN, then

Fresultant =
√

3.52 + 2.12 + 4.82 ≈ 6.30 kN

1 import numpy as np

2

3 F = np.array ([3.5 , 2.1, 4.8])

4 print(np.linalg.norm(F, 2))

x

y

z

Fresultant =
√

F 2
x + F 2

y + F 2
z

Fx Fy

Fz
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ℓ1-Norm vs. ℓ2-Norm

In a city grid, walking from (0, 0) to (3, 4):

x1

x2
x3

x4

x5
x6

x7

x1 + x3 + x6

x
2
+

x
4
+

x
5
+

x
7

A

B

• ℓ1 distance = |3|+ |4| = 7 blocks

• ℓ2 distance =
√
32 + 42 = 5 blocks (not walkable!)
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Frobenius Norm

• ℓ2-norm:

∥x∥2 =

√√√√ n∑
i=1

x2
i

for any vector
x = (x1, x2, · · · , xn)

⊤

• Frobenius norm:

∥X∥F =

√√√√ m∑
i=1

n∑
j=1

x2
ij

for any matrix

X =


x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

 m rows & n columns
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Frobenius Norm

• Example:

A =

[
1 2
3 4

]
⇒ ∥A∥F =

√
12 + 22 + 32 + 42 =

√
30

1 import numpy as np

2

3 frob = lambda X: np.sqrt(np.sum(X ** 2))

4 A = np.array ([[1, 2], [3, 4]])

5 print(frob(A))

• How to use NumPy?

1 print(np.linalg.norm(A, 'f'))
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ℓ∞-Norm

• Mathematical expression of ℓ∞-norm (“Worst-case” or “maximum”
distance):

∥x∥∞ = max{|x1|, |x2|, . . . , |xn|}

• Example:

1 import numpy as np

2

3 a = np.array([-1, 2, -3, 4])

4 print(np.linalg.norm(a, np.inf))

• Write a function?

1 ell_inf = lambda x: np.max(np.abs(x))

2 print(ell_inf(a))

• Physical meaning in engineering:

◦ Maximum stress in a structure
◦ Peak deflection in a beam
◦ Worst-case error in measurements
◦ Safety factor based on extreme values
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ℓ∞-Norm

Example: Worst-case prediction error

• Focuses only on the worst-case element - conservative design

• Python codes

1 # Errors in temperature predictions at different

locations

2 errors = np.array ([-1.2, 0.8, -2.1, 1.5, -0.3, 1.9])

3

4 # L_infinity norm = maximum absolute error

5 max_abs_error = np.max(np.abs(errors))

6 worst_location = np.argmax(np.abs(errors))

• Maximum absolute error: -2.1

• Location: the 3rd value
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ℓ∞-Norm

Example: Safety factor based on extreme values

• In design codes, the maximum stress must not exceed allowable stress:

σmax = max{|σ1|, |σ2|, . . .} = ∥σ∥∞

• If measured stresses = [120,−150, 130] MPa,

∥σ∥∞ = 150MPa

Compare to allowable stress (e.g., 200 MPa) for safety.
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Quick Summary

Wednesday’s Class:

• ℓ1-norm: Sum of absolute values → total deviation

• ℓ2-norm: magnitude in space

• ℓ∞-norm: Maximum absolute value → worst-case measure

• Frobenius Norm: For matrices, like ℓ2-norm for vectors
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Assignment 2 & Exam 1 (Coding Part)

Assignment 2:

• Students:

◦ Complete your coding tasks on Colab
◦ Comment the question number (e.g., # Question 2.2)
◦ Download “.ipynb” from Colab

• TA’s task:

◦ Upload your “.ipynb” to Colab
◦ Run all codes
◦ Grade your results

Exam 1 (coding part):

• Format: Give you Python codes, please write down the output

• Review class: Give 10-15 sample questions (some of them will be
selected for test)
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Quizzes Now!

• Today’s participation (ungraded survey): Please check out

“Class Participation Quiz 10”

Time slot: 2:30PM – 3:00PM

on Canvas.

• Online engagement (graded quizzes)

“Quiz 10”

Deadline: 11:59PM, February 6, 2026

on Canvas.
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Inner Product

• Mathematical expression:

⟨x,y⟩ = x⊤y =
n∑

i=1

xiyi

for any vectors {
x = (x1, x2, · · · , xn)

⊤

y = (y1, y2, · · · , yn)⊤

• Example:

x = (1, 2, 3, 4)⊤ y = (6, 7, 8, 9)⊤

⇒ ⟨x,y⟩ = 1× 6 + 2× 7 + 3× 8 + 4× 9 = 80

1 import numpy as np

2

3 inner = lambda x, y: np.sum(x * y)

4 x = np.arange(1, 5)

5 y = np.arange(6, 10)

6 print(inner(x, y))
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Inner Product

• Mathematical expression:

⟨x,y⟩ = x⊤y =

n∑
i=1

xiyi

for any vectors {
x = (x1, x2, · · · , xn)

⊤

y = (y1, y2, · · · , yn)⊤

• Example:

x = (1, 2, 3, 4)⊤ y = (6, 7, 8, 9)⊤

⇒ ⟨x,y⟩ = 1× 6 + 2× 7 + 3× 8 + 4× 9 = 80

• How to use NumPy?

1 print(np.inner(x, y))

• Other options?

1 print(x @ y)
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Inner Product

• For any vector
x = (x1, x2, · · · , xn)

⊤

what is the inner product ⟨x,x⟩?

1 import numpy as np

2

3 x = np.arange(1, 10)

4 print(np.inner(x, x))

• Recall that

⟨x,x⟩ =
n∑

i=1

xi · xi = ∥x∥22

1 print(np.linalg.norm(x, 2) ** 2)
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Inner Product

• For any vector
x = (x1, x2, · · · , xn)

⊤

what is the inner product ⟨x,x⟩?

1 import numpy as np

2

3 x = np.arange(1, 10)

4 print(np.inner(x, x))

• Recall that

⟨x,x⟩ =
n∑

i=1

xi · xi = ∥x∥22

1 print(np.linalg.norm(x, 2) ** 2)
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Outer Product

• Mathematical expression:

xy⊤ =


x1

x2

...
xm

 [
y1 y2 · · · yn

]
=


x1y1 x1y2 · · · x1yn
x2y1 x2y2 · · · x2yn
...

...
. . .

...
xmy1 xmy2 · · · xmyn


• Example (column vector × row vector = matrix):

x = (1, 2, 3)⊤ y = (4, 5)⊤ ⇒ xy⊤ =

1× 4 1× 5
2× 4 2× 5
3× 4 3× 5

 =

 4 5
8 10
12 15


1 import numpy as np

2

3 x = np.arange(1, 4)

4 y = np.arange(4, 6)

5 print(np.outer(x, y))
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Kronecker Product ⊗

• Mathematical expression:

X ⊗ Y =


x11Y x12Y · · · x1nY
x21Y x22Y · · · x2nY

...
...

. . .
...

xm1Y xm2Y · · · xmnY


• Example:

X =

[
1 2
3 4

]
Y =

[
5 6 7
8 9 10

]
1 import numpy as np

2

3 X = np.array ([[1, 2], [3, 4]])

4 Y = np.array ([[5, 6, 7], [8, 9, 10]])

5 print(np.kron(X, Y))
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Kronecker Product ⊗

• Verify that the Kronecker product of

X =

[
1 2
3 4

]
Y =

[
5 6 7
8 9 10

]
is

X ⊗ Y =

1×
[
5 6 7
8 9 10

]
2×

[
5 6 7
8 9 10

]
3×

[
5 6 7
8 9 10

]
4×

[
5 6 7
8 9 10

]


=


5 6 7 10 12 14
8 9 10 16 18 20
15 18 21 20 24 28
24 27 30 32 36 40


• Size: 4 rows & 6 columns
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Positive Definite Matrix

Revisit quadratic functions y = ax2:

If a > 0, then it always holds that ax2 > 0 for any x ̸= 0.

x

y

y = 2x2

y = −2x2
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Positive Definite Matrix

Extension from y = ax2 to y = x⊤Ax:

If A is a positive definite matrix, then it always holds that x⊤Ax > 0 for any
x ̸= 0.

• Example: Is A =

[
1 0
0 1

]
a positive definite matrix?

• Solution: For any nonzero vector x = (x1, x2)
⊤, we have

◦ matrix-vector multiplication:

Ax =

[
1 0
0 1

] [
x1

x2

]
=

[
x1

x2

]
◦ inner product:

x⊤(Ax) =
[
x1 x2

] [x1

x2

]
= x2

1 + x2
2 > 0

So A is a positive definite matrix.
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Positive Definite Matrix

Extension from y = ax2 to y = x⊤Ax:

If A is a positive definite matrix, then it always holds that x⊤Ax > 0 for any
x ̸= 0.

• Example: Is A =

[
1 0
0 1

]
a positive definite matrix?

• Solution: For any nonzero vector x = (x1, x2)
⊤, we have

◦ matrix-vector multiplication:

Ax =

[
1 0
0 1

] [
x1

x2

]
=

[
x1

x2

]
◦ inner product:

x⊤(Ax) =
[
x1 x2

] [x1

x2

]
= x2

1 + x2
2 > 0

So A is a positive definite matrix.
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Positive Definite Matrix

• Example: Is A =

 2 −1 0
−1 2 −1
0 −1 2

 a positive definite matrix?

• Solution: For any nonzero vector x = (x1, x2, x3)
⊤, we have

◦ matrix-vector multiplication:

Ax =

 2 −1 0
−1 2 −1
0 −1 2

x1

x2

x3

 =

 2x1 − x2

−x1 + 2x2 − x3

−x2 + 2x3



◦ inner product:

x⊤(Ax) =x1(2x1 − x2) + x2(−x1 + 2x2 − x3) + x3(−x2 + 2x3)

= 2x2
1 − 2x1x2 + 2x2

2 − 2x2x3 + 2x2
3

=x2
1 + (x1 − x2)

2 + (x2 − x3)
2 + x2

3 > 0

So A is a positive definite matrix.
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Positive Definite Matrix

• Example: Is A =

 2 −1 0
−1 2 −1
0 −1 2

 a positive definite matrix?

• Solution: For any nonzero vector x = (x1, x2, x3)
⊤, we have

◦ matrix-vector multiplication:

Ax =

 2 −1 0
−1 2 −1
0 −1 2

x1

x2

x3

 =

 2x1 − x2

−x1 + 2x2 − x3

−x2 + 2x3


◦ inner product:

x⊤(Ax) =x1(2x1 − x2) + x2(−x1 + 2x2 − x3) + x3(−x2 + 2x3)

= 2x2
1 − 2x1x2 + 2x2

2 − 2x2x3 + 2x2
3

=x2
1 + (x1 − x2)

2 + (x2 − x3)
2 + x2

3 > 0

So A is a positive definite matrix.
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Angle between Two Vectors

Building connection between inner product and vector’s ℓ2-norm:

• Mathematical expression:

cos(θ) =
a⊤b

∥a∥2 · ∥b∥2
for any vectors

a = (a1, a2, · · · , an)
⊤ b = (b1, b2, · · · , bn)⊤

• Cosine function:

θ

y

π
6

π
3

π
2

1
2

√
3

2

1

y = cos θ
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Angle between Two Vectors

• Mathematical expression:

cos(θ) =
a⊤b

∥a∥2 · ∥b∥2

• Proof (optional)

◦ From geometry:

∥a− b∥22 = ∥a∥22 + ∥b∥22 − 2∥a∥2 · ∥b∥2 · cos(θ)

◦ From algebra:

∥a− b∥22 = ∥a∥22 + ∥b∥22 − 2a⊤b

◦ Solve for cos(θ)
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Angle between Two Vectors

• Mathematical expression:

cos(θ) =
a⊤b

∥a∥2 · ∥b∥2

• Example: Given a = (1, 1)⊤ and b = (2, 0)⊤, we have

cos(θ) =
1× 2 + 1× 0√

12 + 12 ×
√
22 + 02

=
2√
2× 2

=
1√
2

x

y

(1, 1)

(2, 0)

θ
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Angle between Two Vectors

• Example: For vector x =

12
1

 and matrix A =

 2 −1 0
−1 2 −1
0 −1 2

,
compute the angle between x and Ax.

• Matrix-vector multiplication:

Ax =

 2 −1 0
−1 2 −1
0 −1 2

12
1

 =

02
0


• Angle:

cos(θ) =
x⊤(Ax)

∥x∥2 · ∥Ax∥2
=

1× 0 + 2× 2 + 1× 0√
12 + 22 + 12 ×

√
02 + 22 + 02

=

√
6

3

1 import numpy as np

2

3 x = np.array([1, 2, 1])

4 A = np.array ([[2, -1, 0], [-1, 2, -1], [0, -1, 2]])

5 theta = np.arccos(x @ A @ x / (np.linalg.norm(x, 2) * np.

linalg.norm(A @ x, 2)))
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Angle between Two Vectors

• Example: For vector x =

12
1

 and matrix Ax =

02
0

, compute the

angle between x and Ax.

x

y

z

θ

x

Ax
1 2

1
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Visualization with Python

Using Matlab in Python?

• Matplotlib is a comprehensive library for creating static, animated, and
interactive visualizations in Python.

• import convention

1 import matplotlib.pyplot as plt
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Example: Sine Function

• Python code

1 import matplotlib.pyplot as plt

2 import numpy as np

3

4 # Step 1: Generate Data

5 x = np.linspace(0, 2 * np.pi , 50)

6 y = np.sin(x)

7

8 # Step 2: Plot

9 plt.plot(x, y, color = 'blue', linestyle = '-')
10

11 # Step 3: Add Labels and Title

12 plt.title('Sine Function ', fontsize = 14)

13 plt.xlabel(r'Domain: $x \in [0, 2\pi]$', fontsize = 12)

14 plt.ylabel('Amplitude ', fontsize = 12)

15

16 # Step 4: Save & Show

17 plt.savefig('sin_func.pdf')
18 plt.show()
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Example: Sine Function

0 1 2 3 4 5 6
Domain: x [0, 2 ]
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Visualization with Python

Recommended material: https://matplotlib.org
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Quick Summary

Friday’s Class:

• Inner product e.g., ⟨x,y⟩ = x⊤y

• Outer product e.g., xy⊤

• Kronecker product ⊗
• Positive definite matrix

• Angle between two vectors

• Plot figures in Python
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