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How to understand

Applied Numerical Methods for Civil Engineering?

Numerical methods are techniques by which mathematical problems are
formulated so that they can be solved with arithmetic operations.



Environment
)

Programming Environment

® No prior programming experience required!
® Setting up your environment

o Free, no installation

o Cloud-based Jupyter notebooks

o Access anywhere with browser

o Link: https://colab.research.google.com
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Environment
)

Programming Environment

® No prior programming experience required!
® Setting up your environment

o Free, no installation

o Cloud-based Jupyter notebooks

o Access anywhere with browser

o Link: https://colab.research.google.com

® Try it now!

1 print('Hello Civil Engineering!')

2 print('Welcome to Applied Numerical Methods')
® What is print ()7

o A function that displays text
o Anything in quotes is text (string)
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Environment
oce

Quizzes Now!

® Today’s participation (ungraded survey): Please check out
“Class Participation Quiz 5"
Time slot: 2:30PM — 3:00PM

on Canvas.

® Online engagement (graded quizzes)
“Quiz 5" (11 questions)
Deadline: 11:59PM, January 26, 2026

on Canvas.
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Variables: Storing Data

Variables are containers for data

1 # Assign values to variables
2 length = 10.5 # meters
3 width = 5.2 # meters
4 material = 'Steel'

Rules for variable names:

1. Start with letter or underscore

2. Can contain letters, numbers, underscores

3. Case-sensitive: Length # length

4. Descriptive names recommended

5. Avoid Python keywords, e.g., lambda, class, list, def, etc.
Examples:

length = 4
Length = 4.5
print ('length
print ('Length

{}'.format (length))
{}'.format (Length))

N N
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Oe00000000000000000
Basic Data Types

Four essential types
® Integers: Whole numbers ..., —2,—-1,0,1,2,...

1 length = 4

® Floats: Decimal numbers

-

deflection = 0.025 # meters

® Strings: Text

1 material = 'Steel'

® Booleans: True/False

a = True
if a is True:
print (1)
else:
print (0)

QA W N
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Core Concepts in Python
00®0000000000000000

Checking Data Types

Use type () function:

# Check types
length = 4
print (type (length)) # <class 'int'>

deflection = 0.025
print (type(deflection)) # <class 'float'>

material = 'Steel'
print (type (material)) # <class 'str'>

© o N oA W N R

=
o

safe = True
print (type (safe)) # <class 'bool'>

=
N o=

® Why check types?

o Different operations work with different types
o Avoid errors like adding string to number
o Understand what your code is doing
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Core Concepts in Python
0008000000000000000

Basic Arithmetic Operations

Python programming example.

print(a / b) division
print (a ** 2)

print (a ** 3)

quadratic function
cubic function

1 a =2

2b =3

3 print(a + b) plus

4 print(a - b) minus

5 print(a * b) product
6

7

8

H H H KK H

Corresponding arithmetic operations:

Line3: a+b Line 6: %
Line4: a—1b Line 7: a2
Line 5: a-b Line 8: o3

Note: a #* n refers to a to the power of n, or a™ (n is not only an integer).
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Core Concepts in Python
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Basic Arithmetic Operations

Engineering example.

® Definition of normal stress:

o=— F =5000 N

where

o F =5000 N (force)
o A=0.01 m? (area)

1 force = 5000 # N

2 area = 0.01 # m~2

3 stress = force / area # Pa

4 print ('stress = {}'.format(stress)) A=0.01l m?

10/47



Core Concepts in Python
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Order of Operations

Python follows PEMDAS:
1. Parentheses ()
. Exponents

Multiplication

. Addition

2
3
4. Division
5
6. Subtraction

1 # Different results!

2 al = 10 + 5 *x 2 # (5x2 first)
3 a2 = (10 + 5) * 2 # (parentheses first)
a1 =104+5x2 az = (1045) x 2
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Core Concepts in Python
0000008000000000000

Order of Operations

Python follows PEMDAS:
1. Parentheses
2. Exponents
3. Multiplication
4. Division
5
6
h

Addition
Subtraction
Which one is correct? w
‘TouE-I
w = 10 *x 4 # uniform load
2 *x 10 **x 11 # modulus

[ ]
"

3.25 * 10 ** (-4) # moment of inertia
cl =w / 24 * E x I
c2 =w / (24 x E x I)

L T N O
|
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Core Concepts in Python
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Lists: Storing Multiple Values

® | ists store collections of data

1 # List of beam deflections (mm)

> deflections = [12.3, 15.7, 18.2, 14.9, 16.5]

3 print (deflections) # [12.3, 15.7, 18.2, 14.9, 16.5]
4

5 # List of materials

6 materials = ['Steel', 'Concrete', 'Timber', 'Aluminum']
7

8 # Access elements (0O-indexed!)

9 print (deflections [0]) # First: 12.3

10 print (deflections[-1]) # Last: 16.5
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Core Concepts in Python
0000000800000000000

Lists: Storing Multiple Values

® | ists store collections of data

1 # List of beam deflections (mm)

> deflections = [12.3, 15.7, 18.2, 14.9, 16.5]

3 print (deflections) # [12.3, 15.7, 18.2, 14.9, 16.5]
4

5 # List of materials

6 materials = ['Steel', 'Concrete', 'Timber', 'Aluminum']
7

8 # Access elements (0O-indexed!)

9 print (deflections [0]) # First: 12.3

10 print (deflections[-1]) # Last: 16.5

® |ist operations for engineering data

print (len(deflections)) Number of deflections
print (min(deflections)) Minimum deflection
print (max(deflections)) Maximum deflection
print (sum(deflections)) # Total

print (sum(deflections)/len(deflections)) # Average

[ I N R N
H H
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Core Concepts in Python
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Conditionals (if/elif/else)

Make decisions in code:

stress = 235 # MPa

if stress > 250:

print (' WARNING: Stress exceeds yield strength!')
elif stress > 200:

print ('Alert: Stress approaching limit')
else:

print ('Stress within safe limits')

W N oA W N

15 /47



Core Concepts in Python
0000000080000000000

Conditionals (if/elif/else)

Make decisions in code:

stress = 235 # MPa

if stress > 250:

print (' WARNING: Stress exceeds yield strength!')
elif stress > 200:

print ('Alert: Stress approaching limit')
else:

print ('Stress within safe limits')

W N oA W N

® Comparison operators:

o > greater than

o < less than

o >= greater or equal
o <= less or equal

o == equal to

o != not equal to
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Core Concepts in Python
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Logical Operators (and/or/not)

® Use the logical operator and:

stress = 235

if stress <= 250 and stress > 200:
print ('Alert!"')

else:
print ('Others')

o R W N =

® Use the logical operator or:

stress = 235

if stress > 250 or stress > 200:
print ('At least alert!')
else:
print ('Safe!')

oA W N
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Core Concepts in Python
0000000000800000000

for Loop: Repeating Tasks

® Process each item in a sequence:

1 # List of beam deflections

> deflections = [12.3, 15.7, 18.2, 14.9, 16.5] # mm
3

4 # Check each beam

5 for d in deflections:

6 if 4 > 15:

7 print ('Deflection exceeds limit')
8 else:

9 print ('Deflection is 0K')

® Common pattern: Process each item in experimental data
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Core Concepts in Python
0000000000080000000

range () Function for Numerical Loops

® Generate sequences of numbers:

1 # Count from O to 4
2 for i in range(5):
print (i)

# With start and end
for i in range(2, 6):
print (i)

® N o g s W

9 # With step
10 for i in range(0, 10, 2):
11 print (i)
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Core Concepts in Python
0000000000080000000

range () Function for Numerical Loops

® Generate sequences of numbers:

1 # Count from O to 4
2 for i in range(5):
print (i)

# With start and end
for i in range(2, 6):
print (i)

® N o g s W

9 # With step
10 for i in range(0, 10, 2):
11 print (i)

Line 2-3 Result: 0,1, 2, 3, 4
Line 6-7 Result: 2, 3,4, 5
Line 10-11 Result: 0, 2, 4, 6, 8
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Core Concepts in Python
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while Loop: Repeat Until Condition

® Repeat while condition is true:

a=[1, 2, 3, 4, 5, 6, 7, 8]
i=20
while al[i] < 6:

print (al[il)

i=1i+1

[S I NIV SR

Result: 0,1, 2, 3,4,5

21/47



Core Concepts in Python
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Functions: Reusable Code Blocks

® Quadratic formula. Given ax® + bz + ¢ = 0 (a # 0), the quadratic
formula is

- —b+ Vb?% — dac

2a

1 import numpy as np

2

3 def quad_formula(a, b, c):

t = np.sqrt(b**2 - 4*axc)
x1 = (-b + t) / (2xa)

x2 = (-b - t) / (2*a)
return x1, x2

~ o a &

Line 4 Compute t = v/b? — 4ac

Line 5 Compute 1 = b+t
2a

Line 6 Compute x2 = —b-t
2a
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Core Concepts in Python
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Functions: Reusable Code Blocks

® Given parameters: uniform load w = 1 x 10 kg/m, modulus
E =2 x 10 Pa, and moment of inertia I = 3.25 x 10™* m*.

® Compute the constant factor:

w 10%

= =6.41 x 107°
20-E-1 24 x (2% 1011) x (3.25 x 10-49) *

Cc =

1 import numpy as np

2

3 def const(w, E, I):

4 return w / (24 * E * I)

5

6 w = 10 *x 4 # uniform load

7 E =2 % 10 *x 11 # modulus

8 I = 3.25 * 10 ** (-4) # moment of inertia
9 ¢ = const(w, E, I) # constant factor
10 print (c)

23/47



Core Concepts in Python
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Quick Summary

Monday’s Class:
® Python environment (no installation with Colab)

® Introduction to Python: Variables, data types (integer, float, string, and
Boolean).

® Arithmetic operations, order of operations.
® Storing multiple values with lists
® |ogical operators (for and while)

® Defining functions by yourself
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Core Concepts in Python
0000000000000000e800

Assignment 1

® Correction: Question 1b.
Euler's Method for a Simple ODE (Numerical Computing).

dy

— -1
o =ty y(0)

The analytical solution is
y(z) =2 —az—1
because

dy _

g 2" —1l=zx+ 2" —2z—-1)=x+y

® Questions 2b, 3b. Please use Python programming

o Bungee jumping velocity model: Time step size At =0.1s
o Cantilever beam deflection: Step size Az = 0.125m
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Core Concepts in Python
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Exam 1

® Exam Information

o Date: February 20, 2026
o Time: 2:30PM - 3:20PM
o Written Exam

o 15% in your final score

® Format

o 20 quiz questions (40 points in total): All selected from the
quizzes sessions

o Numerical computing tests (= 45 points)

o Python programming tests (=~ 15 points): | will give you Python
codes, please write down the results.

® How can | help?
o Review classes on February 16/18, 2026

® Maximum Tolerance: Given the scores of Exam 1 and Exam 2 as a and
b, respectively, only in the case of b > a, then your score for both exams
will become b.

26 /47



Core Concepts in Python
000000000000000000e

Quizzes Now!

® Today’s participation (ungraded survey): Please check out
“Class Participation Quiz 6"
Time slot: 2:30PM — 3:00PM

on Canvas.

® Online engagement (graded quizzes)
“Quiz 6" (13 questions)
Deadline: 11:59PM, January 28, 2026

on Canvas.
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Introduction to NumPy
©0000000000000000

Learning Objectives

You should be able to:

® Understand the difference among one-, two- and n-dimensional arrays in
NumPy

® Understand how to apply some linear algebra operations to n-dimensional
arrays without using for-loops

® Understand axis and shape properties for n-dimensional arrays
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Introduction to NumPy
0®000000000000000

Basics

® Why NumPy for Civil Engineering?

o Numerical Computing: Solve engineering equations efficiently

o Matrix Operations: Structural analysis, stiffness matrices

o Data Processing: Sensor data, experimental results

o Performance: 50x faster than Python lists for numerical computing

® What is NumPy?

o Numerical Python library
o n-dimensional arrays as core data structure
o Mathematical functions optimized for arrays

29/47



Introduction to NumPy
00®00000000000000

Importing NumPy

® |mport convention:
1 import numpy as np

® Why np?

o Standard convention in scientific Python
o Shorter than typing numpy every time
o Everyone uses this convention
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Introduction to NumPy
00080000000000000

NumPy Arrays vs. Python Lists

® Python Lists
a = [2.2, 3.3, 4.1, 5.2, 6.1]
b= [1.5, 2.1, 3.8, 4.3, 5.2]
c =[]

for i in range(5):
c.append(ali]l * b[i]) # Inefficient!

[S, I NI OUR SR
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Introduction to NumPy
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NumPy Arrays vs. Python Lists

® Python Lists

1a= [2.2, 3.3, 4.1, 5.2, 6.1]

> b [1.5, 2.1, 3.8, 4.3, 5.2]

3¢ =[]

4 for i in range(5):

5 c.append(ali]l * b[i]) # Inefficient!
® NumPy Arrays

1 import numpy as np

2

3 a = np.array([2.2, 3.3, 4.1, 5.2, 6.1])
4 b = np.array([1.5, 2.1, 3.8, 4.3, 5.2])
5¢c = a *x b # Fast!

Key Advantage: Vectorization — Faster computation, cleaner code
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Introduction to NumPy
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Algebraic Data — NumPy Arrays

® Scalar,eg.,z=1

I import numpy as np
2
3 x = np.array (1)

® \lector, e.g.,, x = of length 6

U W N =

1 x = np.array([1, 2, 3, 4, 5, 6])

® Matrix, e.g., X = [; i 2} of 2 rows and 3 columns
3,

1 X = np.array ([[1, 51, [2, 4, 611)
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Introduction to NumPy
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Algebraic Data — NumPy Arrays

® Scalar,eg.,z=1

I import numpy as np
2
3 x = np.array (1)

Vector, e.g., x = of length 6

U W N =

1 x = np.array([1, 2, 3, 4, 5, 6])

1 3 5
2 4 6

1 X = np.array([[1, 3, 5], [2, 4, 6]1])

Matrix, e.g., X = [ } of 2 rows and 3 columns

® Data type (integer, float, string, or boolean?)

1 print (type (X))
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Introduction to NumPy
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Algebraic Data — NumPy Arrays

A system of linear equations.

Nra N [

® Try to solve by hand, and then check with Python.

® |et's solve:

® Define matrix A and vector b:

. ) 13 2
Line 3: A= L _J

Line 4: b= {8}

import numpy as np

1

2

3 A = np.array([[3, 2], [1, -111)

4 b = np.array([5, 0])

5 solution = np.linalg.solve(A, b)

6 print ('Solution (x, y):', solution)
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Introduction to NumPy
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Creating Arrays with Built-In Functions

Line 3: Matrix of ones (Fill with ones)

Line 4: Matrix of zeros (Filling with zeros)

0000
B*{oooo]

® Line 5: Identify matrix (1 on the diagonal and 0 otherwise)
1 0 0
cC=1(0 1 0
0 0 1
1 import numpy as np
2
3 A = np.ones((2, 4)) # (number of rows, number of
columns)
4 B = np.zeros((2, 4)) # (number of rows, number of
columns)
5 C = np.eye(3) # number of rows/columns
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Introduction to NumPy
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Creating Sequences with np.arange ()

® np.arange(): Like Python's range (), but returns array

import numpy as np

# Bungee jumping velocity

delta_t = 0.1

t_start = 0

t_end = 20

time_step = np.arange(t_start, t_end, delta_t)
print (time_step)

NG A W N

will not count t_end = 20.

® Toy examples:

1 import numpy as np

2

3 a = np.arange(1, 10, 2) # step size: 2

4 b = np.arange(1, 10, 2.5) # step size: 2.5

a=(1,3,579"  b=(1,356,85)"
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Introduction to NumPy
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np.linspace(): Specifying Number of Points

Given Az = 0.5, the number of steps is L/Ax = 8.

Azx =0.5m
x50
I
=N 1 ) T3 T4 T5 T6 x7 31:8
L=4m 3

y (m)

import numpy as np

Xx = np.linspace(0, 4, 5) # 4 / 1 + 1

1
2
3 # Equally spaced points between O and
4
5 x = np.linspace(0, 4, 9) # 4 / 0.5 +

=
o
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Introduction to NumPy
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Basic Operations: Element-Wise Product

® Vectors of the same length, e.g.,

a = (20,30,40,50)"  b=(0,1,2,3)"

import numpy as np

np.array ([20, 30, 40, 501)
np.array ([0, 1, 2, 3])

N o R W N
o # o p

b = np.arange (4)
= a * b # new array
print (c)
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Introduction to NumPy
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Basic Operations: Element-Wise Product

Vectors of the same length, e.g.,

a = (20,30,40,50)"  b=(0,1,2,3)"

import numpy as np

np.array ([20, 30, 40, 501)
np.array ([0, 1, 2, 3])

= np.arange (4)

a * b # new array

print (c)

N o R W N
o # o p
"o

Matrices of the same size, e.g.,

by el

1 A = np.array ([[1, 2], [3, 411)
> B = np.array([[5, 6], [7, 811)
3C=A % B

4 print (c)
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Introduction to NumPy
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Matrix-Vector Multiplication

A system of linear equations.

® | et's solve:

i Y 11 B B

1 import numpy as np

2

3 A = np.array([[3, 2], [1, -111)

4 xy = np.array([1, 1])

5 b =A@ x # multiplication with the symbol @
6 print (b)
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Introduction to NumPy
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np.random.rand(): Generating Random Values

np.random.rand () creates an array of the given shape and populate it with
random samples from a uniform distribution over [0, 1).

® np.random.seed() function is used to initialize the pseudo-random
number generator in NumPy

® Generate a vector:

import numpy as np
np.random.seed (0)

E N N

a = np.random.rand (4)

a = (0.5488135,0.71518937,0.60276338, 0.54488318)T
® Generate a matrix:

import numpy as np
np.random.seed (0)

AW N =

A = np.random.rand (2, 3)

A= 0.5488135 0.71518937 0.60276338
~ 10.54488318  0.4236548  0.64589411
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Introduction to NumPy
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np.reshape (): Reshaping Arrays

® Converting matrix into vector
1 2

Given a matrix A = {4 5 6

} , there are two strategies:

1 import numpy as np

2

3 A = np.array ([[1, 2, 3], [4, 5, 61])

4 al = np.reshape(A, (6)) # C-like index ordering

5 print (al)

6 a2 = np.reshape(A, (6), order = 'F') # Fortran-like

index ordering
7 print (a2)

ar = (1,2,3,4,5,6)  as=(1,4,2,5,3,6)"
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Introduction to NumPy
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np.reshape (): Reshaping Arrays

® Converting vector into matrix
How about this?

a, =(1,2,3,4,5,6)"

-

A1 = np.reshape(al, (2, 3)) # C-like index ordering

print (A1)

3 A2 = np.reshape(al, (2, 3), order = 'F') # Fortran-like
index ordering

4 print (A2)

N
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Introduction to NumPy
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Indexing

® Given a vector

import numpy as np
np.random.seed (0)

a = np.random.rand (10)
print (a)

QA W N

Result:

1 [0.5488135 0.71518937 0.60276338 0.54488318 0.4236548
0.64589411 0.43758721 0.891773 0.96366276
0.38344152]

® Indexing

1i=1

2j =7

3 print(alil) # 2nd

4 print(aljl) # 8th

5 print(ali :1) # 2nd to the last
6 print(al: jl) # 1st to Tth

7 print(afli : jl) # 2nd to 7th
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Introduction to NumPy
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Indexing

® Given a matrix

import numpy as np
np.random.seed (0)

A = np.random.rand (7, 5)
print (A)
print (A[2 : 4, 3 : 5])

oG R W N

0.5488135 0.71518937 0.60276338 0.54488318  0.4236548 ]
0.64589411 0.43758721  0.891773  0.96366276 0.38344152
0.79172504 0.52889492 0.56804456 | 0.92559664 0.07103606
A= | 0.0871293  0.0202184 0.83261985 | 0.77815675 0.87001215
0.97861834 0.79915856 0.46147936 0.78052918 0.11827443
0.63992102 0.14335329 0.94466892 0.52184832 0.41466194
| 0.26455561 0.77423369 0.45615033 0.56843395 0.0187898 |
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Quick Summary

Wednesday’s Class:
® Difference between NumPy array and Python list
® Writing of algebraic data with NumPy arrays
® Built-in functions, e.g., np.ones (), np.zeros (), and np.eye ()
® NumPy sequences with np.arange () (set step size)
® NumPy sequences with np.linspace() (set the number of steps)

® Basic operations: Element-wise product * and matrix-vector
multiplication @ (“at” symbol)

® Random value generation with np.random.rand ()
® Reshaping arrays (matrix to vector, or vector to matrix): np.reshape ()

® Indexing
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