Applied Numerical Methods for Civil Engineering

CGN 3405 - 0002
Week 3: Introduction to Python Programming: Part |
Xinyu Chen

Assistant Professor

University of Central Florida

How to understand

Applied Numerical Methods for Civil Engineering?

Numerical methods are techniques by which mathematical problems are
formulated so that they can be solved with arithmetic operations.

Environment
)

Programming Environment

® No prior programming experience required!
® Setting up your environment

o Free, no installation

o Cloud-based Jupyter notebooks

o Access anywhere with browser

o Link: https://colab.research.google.com

3/47

https://colab.research.google.com

Environment
)

Programming Environment

® No prior programming experience required!
® Setting up your environment

o Free, no installation

o Cloud-based Jupyter notebooks

o Access anywhere with browser

o Link: https://colab.research.google.com

® Try it now!

1 print('Hello Civil Engineering!')

2 print('Welcome to Applied Numerical Methods')
® What is print ()7

o A function that displays text
o Anything in quotes is text (string)

4/47

https://colab.research.google.com

Environment
oce

Quizzes Now!

® Today’s participation (ungraded survey): Please check out
“Class Participation Quiz 5"
Time slot: 2:30PM — 3:00PM

on Canvas.

® Online engagement (graded quizzes)
“Quiz 5" (11 questions)
Deadline: 11:59PM, January 26, 2026

on Canvas.

5/47

0000000000000 00000
Variables: Storing Data

Variables are containers for data

1 # Assign values to variables
2 length = 10.5 # meters
3 width = 5.2 # meters
4 material = 'Steel'

Rules for variable names:

1. Start with letter or underscore

2. Can contain letters, numbers, underscores

3. Case-sensitive: Length # length

4. Descriptive names recommended

5. Avoid Python keywords, e.g., lambda, class, list, def, etc.
Examples:

length = 4
Length = 4.5
print ('length
print ('Length

{}'.format (length))
{}'.format (Length))

N N

6/47

Oe00000000000000000
Basic Data Types

Four essential types
® Integers: Whole numbers ..., —2,—-1,0,1,2,...

1 length = 4

® Floats: Decimal numbers

-

deflection = 0.025 # meters

® Strings: Text

1 material = 'Steel'

® Booleans: True/False

a = True
if a is True:
print (1)
else:
print (0)

QA W N

7/47

Core Concepts in Python
00®0000000000000000

Checking Data Types

Use type () function:

Check types
length = 4
print (type (length)) # <class 'int'>

deflection = 0.025
print (type(deflection)) # <class 'float'>

material = 'Steel'
print (type (material)) # <class 'str'>

© o N oA W N R

=
o

safe = True
print (type (safe)) # <class 'bool'>

=
N o=

® Why check types?

o Different operations work with different types
o Avoid errors like adding string to number
o Understand what your code is doing

8/47

Core Concepts in Python
0008000000000000000

Basic Arithmetic Operations

Python programming example.

print(a / b) division
print (a ** 2)

print (a ** 3)

quadratic function
cubic function

1 a =2

2b =3

3 print(a + b) plus

4 print(a - b) minus

5 print(a * b) product
6

7

8

H H H KK H

Corresponding arithmetic operations:

Line3: a+b Line 6: %
Line4: a—1b Line 7: a2
Line 5: a-b Line 8: o3

Note: a #* n refers to a to the power of n, or a™ (n is not only an integer).

9/47

Core Concepts in Python
0000800000000000000

Basic Arithmetic Operations

Engineering example.

® Definition of normal stress:

o=— F =5000 N

where

o F =5000 N (force)
o A=0.01 m? (area)

1 force = 5000 # N

2 area = 0.01 # m~2

3 stress = force / area # Pa

4 print ('stress = {}'.format(stress)) A=0.01l m?

10/47

Core Concepts in Python
0000080000000000000

Order of Operations

Python follows PEMDAS:
1. Parentheses ()
. Exponents

Multiplication

. Addition

2
3
4. Division
5
6. Subtraction

1 # Different results!

2 al = 10 + 5 *x 2 # (5x2 first)
3 a2 = (10 + 5) * 2 # (parentheses first)
a1 =104+5x2 az = (1045) x 2

11/47

Core Concepts in Python
0000008000000000000

Order of Operations

Python follows PEMDAS:
1. Parentheses
2. Exponents
3. Multiplication
4. Division
5
6
h

Addition
Subtraction
Which one is correct? w
‘TouE-I
w = 10 *x 4 # uniform load
2 *x 10 **x 11 # modulus

[]
"

3.25 * 10 ** (-4) # moment of inertia
cl =w / 24 * E x I
c2 =w / (24 x E x I)

L T N O
|

12/47

Core Concepts in Python
0000000800000000000

Lists: Storing Multiple Values

® | ists store collections of data

1 # List of beam deflections (mm)

> deflections = [12.3, 15.7, 18.2, 14.9, 16.5]

3 print (deflections) # [12.3, 15.7, 18.2, 14.9, 16.5]
4

5 # List of materials

6 materials = ['Steel', 'Concrete', 'Timber', 'Aluminum']
7

8 # Access elements (0O-indexed!)

9 print (deflections [0]) # First: 12.3

10 print (deflections[-1]) # Last: 16.5

13/47

Core Concepts in Python
0000000800000000000

Lists: Storing Multiple Values

® | ists store collections of data

1 # List of beam deflections (mm)

> deflections = [12.3, 15.7, 18.2, 14.9, 16.5]

3 print (deflections) # [12.3, 15.7, 18.2, 14.9, 16.5]
4

5 # List of materials

6 materials = ['Steel', 'Concrete', 'Timber', 'Aluminum']
7

8 # Access elements (0O-indexed!)

9 print (deflections [0]) # First: 12.3

10 print (deflections[-1]) # Last: 16.5

® |ist operations for engineering data

print (len(deflections)) Number of deflections
print (min(deflections)) Minimum deflection
print (max(deflections)) Maximum deflection
print (sum(deflections)) # Total

print (sum(deflections)/len(deflections)) # Average

[I N R N
H H

14/47

Core Concepts in Python
0000000080000000000

Conditionals (if/elif/else)

Make decisions in code:

stress = 235 # MPa

if stress > 250:

print (' WARNING: Stress exceeds yield strength!')
elif stress > 200:

print ('Alert: Stress approaching limit')
else:

print ('Stress within safe limits')

W N oA W N

15 /47

Core Concepts in Python
0000000080000000000

Conditionals (if/elif/else)

Make decisions in code:

stress = 235 # MPa

if stress > 250:

print (' WARNING: Stress exceeds yield strength!')
elif stress > 200:

print ('Alert: Stress approaching limit')
else:

print ('Stress within safe limits')

W N oA W N

® Comparison operators:

o > greater than

o < less than

o >= greater or equal
o <= less or equal

o == equal to

o != not equal to

16 /47

Core Concepts in Python
000000000e000000000

Logical Operators (and/or/not)

® Use the logical operator and:

stress = 235

if stress <= 250 and stress > 200:
print ('Alert!"')

else:
print ('Others')

o R W N =

® Use the logical operator or:

stress = 235

if stress > 250 or stress > 200:
print ('At least alert!')
else:
print ('Safe!')

oA W N

17/47

Core Concepts in Python
0000000000800000000

for Loop: Repeating Tasks

® Process each item in a sequence:

1 # List of beam deflections

> deflections = [12.3, 15.7, 18.2, 14.9, 16.5] # mm
3

4 # Check each beam

5 for d in deflections:

6 if 4 > 15:

7 print ('Deflection exceeds limit')
8 else:

9 print ('Deflection is 0K')

® Common pattern: Process each item in experimental data

18/47

Core Concepts in Python
0000000000080000000

range () Function for Numerical Loops

® Generate sequences of numbers:

1 # Count from O to 4
2 for i in range(5):
print (i)

With start and end
for i in range(2, 6):
print (i)

® N o g s W

9 # With step
10 for i in range(0, 10, 2):
11 print (i)

19/47

Core Concepts in Python
0000000000080000000

range () Function for Numerical Loops

® Generate sequences of numbers:

1 # Count from O to 4
2 for i in range(5):
print (i)

With start and end
for i in range(2, 6):
print (i)

® N o g s W

9 # With step
10 for i in range(0, 10, 2):
11 print (i)

Line 2-3 Result: 0,1, 2, 3, 4
Line 6-7 Result: 2, 3,4, 5
Line 10-11 Result: 0, 2, 4, 6, 8

20/47

Core Concepts in Python
0000000000008000000

while Loop: Repeat Until Condition

® Repeat while condition is true:

a=[1, 2, 3, 4, 5, 6, 7, 8]
i=20
while al[i] < 6:

print (al[il)

i=1i+1

[S I NIV SR

Result: 0,1, 2, 3,4,5

21/47

Core Concepts in Python
0000000000000e00000

Functions: Reusable Code Blocks

® Quadratic formula. Given ax® + bz + ¢ = 0 (a # 0), the quadratic
formula is

- —b+ Vb?% — dac

2a

1 import numpy as np

2

3 def quad_formula(a, b, c):

t = np.sqrt(b**2 - 4*axc)
x1 = (-b + t) / (2xa)

x2 = (-b - t) / (2*a)
return x1, x2

~ o a &

Line 4 Compute t = v/b? — 4ac

Line 5 Compute 1 = b+t
2a

Line 6 Compute x2 = —b-t
2a

22/47

Core Concepts in Python
0000000000000O80000

Functions: Reusable Code Blocks

® Given parameters: uniform load w = 1 x 10 kg/m, modulus
E =2 x 10 Pa, and moment of inertia I = 3.25 x 10™* m*.

® Compute the constant factor:

w 10%

= =6.41 x 107°
20-E-1 24 x (2% 1011) x (3.25 x 10-49) *

Cc =

1 import numpy as np

2

3 def const(w, E, I):

4 return w / (24 * E * I)

5

6 w = 10 *x 4 # uniform load

7 E =2 % 10 *x 11 # modulus

8 I = 3.25 * 10 ** (-4) # moment of inertia
9 ¢ = const(w, E, I) # constant factor
10 print (c)

23/47

Core Concepts in Python
0000000000000O0e000

Quick Summary

Monday’s Class:
® Python environment (no installation with Colab)

® Introduction to Python: Variables, data types (integer, float, string, and
Boolean).

® Arithmetic operations, order of operations.
® Storing multiple values with lists
® |ogical operators (for and while)

® Defining functions by yourself

24/47

Core Concepts in Python
0000000000000000e800

Assignment 1

® Correction: Question 1b.
Euler's Method for a Simple ODE (Numerical Computing).

dy

— -1
o =ty y(0)

The analytical solution is
y(z) =2 —az—1
because

dy _

g 2" —1l=zx+ 2" —2z—-1)=x+y

® Questions 2b, 3b. Please use Python programming

o Bungee jumping velocity model: Time step size At =0.1s
o Cantilever beam deflection: Step size Az = 0.125m

25/47

Core Concepts in Python
00000000000000000e0

Exam 1

® Exam Information

o Date: February 20, 2026
o Time: 2:30PM - 3:20PM
o Written Exam

o 15% in your final score

® Format

o 20 quiz questions (40 points in total): All selected from the
quizzes sessions

o Numerical computing tests (= 45 points)

o Python programming tests (=~ 15 points): | will give you Python
codes, please write down the results.

® How can | help?
o Review classes on February 16/18, 2026

® Maximum Tolerance: Given the scores of Exam 1 and Exam 2 as a and
b, respectively, only in the case of b > a, then your score for both exams
will become b.

26 /47

Core Concepts in Python
000000000000000000e

Quizzes Now!

® Today’s participation (ungraded survey): Please check out
“Class Participation Quiz 6"
Time slot: 2:30PM — 3:00PM

on Canvas.

® Online engagement (graded quizzes)
“Quiz 6" (13 questions)
Deadline: 11:59PM, January 28, 2026

on Canvas.

27 /47

Introduction to NumPy
©0000000000000000

Learning Objectives

You should be able to:

® Understand the difference among one-, two- and n-dimensional arrays in
NumPy

® Understand how to apply some linear algebra operations to n-dimensional
arrays without using for-loops

® Understand axis and shape properties for n-dimensional arrays

28/47

Introduction to NumPy
0®000000000000000

Basics

® Why NumPy for Civil Engineering?

o Numerical Computing: Solve engineering equations efficiently

o Matrix Operations: Structural analysis, stiffness matrices

o Data Processing: Sensor data, experimental results

o Performance: 50x faster than Python lists for numerical computing

® What is NumPy?

o Numerical Python library
o n-dimensional arrays as core data structure
o Mathematical functions optimized for arrays

29/47

Introduction to NumPy
00®00000000000000

Importing NumPy

® |mport convention:
1 import numpy as np

® Why np?

o Standard convention in scientific Python
o Shorter than typing numpy every time
o Everyone uses this convention

30/47

Introduction to NumPy
00080000000000000

NumPy Arrays vs. Python Lists

® Python Lists
a = [2.2, 3.3, 4.1, 5.2, 6.1]
b= [1.5, 2.1, 3.8, 4.3, 5.2]
c =[]

for i in range(5):
c.append(ali]l * b[i]) # Inefficient!

[S, I NI OUR SR

31/47

Introduction to NumPy
00080000000000000

NumPy Arrays vs. Python Lists

® Python Lists

1a= [2.2, 3.3, 4.1, 5.2, 6.1]

> b [1.5, 2.1, 3.8, 4.3, 5.2]

3¢ =[]

4 for i in range(5):

5 c.append(ali]l * b[i]) # Inefficient!
® NumPy Arrays

1 import numpy as np

2

3 a = np.array([2.2, 3.3, 4.1, 5.2, 6.1])
4 b = np.array([1.5, 2.1, 3.8, 4.3, 5.2])
5¢c = a *x b # Fast!

Key Advantage: Vectorization — Faster computation, cleaner code

32/47

Introduction to NumPy
00008000000000000
Algebraic Data — NumPy Arrays

® Scalar,eg.,z=1

I import numpy as np
2
3 x = np.array (1)

® \lector, e.g.,, x = of length 6

U W N =

1 x = np.array([1, 2, 3, 4, 5, 6])

® Matrix, e.g., X = [; i 2} of 2 rows and 3 columns
3,

1 X = np.array ([[1, 51, [2, 4, 611)

33/47

Introduction to NumPy
00008000000000000
Algebraic Data — NumPy Arrays

® Scalar,eg.,z=1

I import numpy as np
2
3 x = np.array (1)

Vector, e.g., x = of length 6

U W N =

1 x = np.array([1, 2, 3, 4, 5, 6])

1 3 5
2 4 6

1 X = np.array([[1, 3, 5], [2, 4, 6]1])

Matrix, e.g., X = [} of 2 rows and 3 columns

® Data type (integer, float, string, or boolean?)

1 print (type (X))

34/47

Introduction to NumPy
00000800000000000
Algebraic Data — NumPy Arrays

A system of linear equations.

Nra N [

® Try to solve by hand, and then check with Python.

® |et's solve:

® Define matrix A and vector b:

.) 13 2
Line 3: A= L _J

Line 4: b= {8}

import numpy as np

1

2

3 A = np.array([[3, 2], [1, -111)

4 b = np.array([5, 0])

5 solution = np.linalg.solve(A, b)

6 print ('Solution (x, y):', solution)

35/47

Introduction to NumPy
00000080000000000

Creating Arrays with Built-In Functions

Line 3: Matrix of ones (Fill with ones)

Line 4: Matrix of zeros (Filling with zeros)

0000
B*{oooo]

® Line 5: Identify matrix (1 on the diagonal and 0 otherwise)
1 0 0
cC=1(0 1 0
0 0 1
1 import numpy as np
2
3 A = np.ones((2, 4)) # (number of rows, number of
columns)
4 B = np.zeros((2, 4)) # (number of rows, number of
columns)
5 C = np.eye(3) # number of rows/columns

36 /47

Introduction to NumPy
00000008000000000

Creating Sequences with np.arange ()

® np.arange(): Like Python's range (), but returns array

import numpy as np

Bungee jumping velocity

delta_t = 0.1

t_start = 0

t_end = 20

time_step = np.arange(t_start, t_end, delta_t)
print (time_step)

NG A W N

will not count t_end = 20.

® Toy examples:

1 import numpy as np

2

3 a = np.arange(1, 10, 2) # step size: 2

4 b = np.arange(1, 10, 2.5) # step size: 2.5

a=(1,3,579" b=(1,356,85)"

37/47

Introduction to NumPy
00000000800000000
np.linspace(): Specifying Number of Points

Given Az = 0.5, the number of steps is L/Ax = 8.

Azx =0.5m
x50
I
=N 1) T3 T4 T5 T6 x7 31:8
L=4m 3

y (m)

import numpy as np

Xx = np.linspace(0, 4, 5) # 4 / 1 + 1

1
2
3 # Equally spaced points between O and
4
5 x = np.linspace(0, 4, 9) # 4 / 0.5 +

=
o

38/47

Introduction to NumPy
000000000e0000000

Basic Operations: Element-Wise Product

® Vectors of the same length, e.g.,

a = (20,30,40,50)" b=(0,1,2,3)"

import numpy as np

np.array ([20, 30, 40, 501)
np.array ([0, 1, 2, 3])

N o R W N
o # o p

b = np.arange (4)
= a * b # new array
print (c)

39/47

Introduction to NumPy
000000000e0000000

Basic Operations: Element-Wise Product

Vectors of the same length, e.g.,

a = (20,30,40,50)" b=(0,1,2,3)"

import numpy as np

np.array ([20, 30, 40, 501)
np.array ([0, 1, 2, 3])

= np.arange (4)

a * b # new array

print (c)

N o R W N
o # o p
"o

Matrices of the same size, e.g.,

by el

1 A = np.array ([[1, 2], [3, 411)
> B = np.array([[5, 6], [7, 811)
3C=A % B

4 print (c)

40/47

Introduction to NumPy
00000000008000000

Matrix-Vector Multiplication

A system of linear equations.

® | et's solve:

i Y 11 B B

1 import numpy as np

2

3 A = np.array([[3, 2], [1, -111)

4 xy = np.array([1, 1])

5 b =A@ x # multiplication with the symbol @
6 print (b)

41/47

Introduction to NumPy
00000000000e00000
np.random.rand(): Generating Random Values

np.random.rand () creates an array of the given shape and populate it with
random samples from a uniform distribution over [0, 1).

® np.random.seed() function is used to initialize the pseudo-random
number generator in NumPy

® Generate a vector:

import numpy as np
np.random.seed (0)

E N N

a = np.random.rand (4)

a = (0.5488135,0.71518937,0.60276338, 0.54488318)T
® Generate a matrix:

import numpy as np
np.random.seed (0)

AW N =

A = np.random.rand (2, 3)

A= 0.5488135 0.71518937 0.60276338
~ 10.54488318 0.4236548 0.64589411

42/47

Introduction to NumPy
000000000000e80000

np.reshape (): Reshaping Arrays

® Converting matrix into vector
1 2

Given a matrix A = {4 5 6

} , there are two strategies:

1 import numpy as np

2

3 A = np.array ([[1, 2, 3], [4, 5, 61])

4 al = np.reshape(A, (6)) # C-like index ordering

5 print (al)

6 a2 = np.reshape(A, (6), order = 'F') # Fortran-like

index ordering
7 print (a2)

ar = (1,2,3,4,5,6) as=(1,4,2,5,3,6)"

43/47

Introduction to NumPy
0000000000000e000

np.reshape (): Reshaping Arrays

® Converting vector into matrix
How about this?

a, =(1,2,3,4,5,6)"

-

A1 = np.reshape(al, (2, 3)) # C-like index ordering

print (A1)

3 A2 = np.reshape(al, (2, 3), order = 'F') # Fortran-like
index ordering

4 print (A2)

N

44 /47

Introduction to NumPy
00000000000000e00
Indexing

® Given a vector

import numpy as np
np.random.seed (0)

a = np.random.rand (10)
print (a)

QA W N

Result:

1 [0.5488135 0.71518937 0.60276338 0.54488318 0.4236548
0.64589411 0.43758721 0.891773 0.96366276
0.38344152]

® Indexing

1i=1

2j =7

3 print(alil) # 2nd

4 print(aljl) # 8th

5 print(ali :1) # 2nd to the last
6 print(al: jl) # 1st to Tth

7 print(afli : jl) # 2nd to 7th

45/47

Introduction to NumPy
000000000000000e0

Indexing

® Given a matrix

import numpy as np
np.random.seed (0)

A = np.random.rand (7, 5)
print (A)
print (A[2 : 4, 3 : 5])

oG R W N

0.5488135 0.71518937 0.60276338 0.54488318 0.4236548]
0.64589411 0.43758721 0.891773 0.96366276 0.38344152
0.79172504 0.52889492 0.56804456 | 0.92559664 0.07103606
A= | 0.0871293 0.0202184 0.83261985 | 0.77815675 0.87001215
0.97861834 0.79915856 0.46147936 0.78052918 0.11827443
0.63992102 0.14335329 0.94466892 0.52184832 0.41466194
| 0.26455561 0.77423369 0.45615033 0.56843395 0.0187898 |

46 /47

Introduction to NumPy
0000000000000000e

Quick Summary

Wednesday’s Class:
® Difference between NumPy array and Python list
® Writing of algebraic data with NumPy arrays
® Built-in functions, e.g., np.ones (), np.zeros (), and np.eye ()
® NumPy sequences with np.arange () (set step size)
® NumPy sequences with np.linspace() (set the number of steps)

® Basic operations: Element-wise product * and matrix-vector
multiplication @ (“at” symbol)

® Random value generation with np.random.rand ()
® Reshaping arrays (matrix to vector, or vector to matrix): np.reshape ()

® Indexing

47 /47

	Environment
	Core Concepts in Python
	Introduction to NumPy

