
Applied Numerical Methods for Civil Engineering

CGN 3405 - 0002

Week 3: Introduction to Python Programming: Part I

Xinyu Chen

Assistant Professor

University of Central Florida

How to understand

Applied Numerical Methods for Civil Engineering?

Numerical methods are techniques by which mathematical problems are
formulated so that they can be solved with arithmetic operations.

Environment Core Concepts in Python Introduction to NumPy

Programming Environment

• No prior programming experience required!

• Setting up your environment

◦ Free, no installation
◦ Cloud-based Jupyter notebooks
◦ Access anywhere with browser
◦ Link: https://colab.research.google.com

• Try it now!

1 print('Hello Civil Engineering!')
2 print('Welcome to Applied Numerical Methods ')

• What is print()?

◦ A function that displays text
◦ Anything in quotes is text (string)

3 / 47

https://colab.research.google.com

Environment Core Concepts in Python Introduction to NumPy

Programming Environment

• No prior programming experience required!

• Setting up your environment

◦ Free, no installation
◦ Cloud-based Jupyter notebooks
◦ Access anywhere with browser
◦ Link: https://colab.research.google.com

• Try it now!

1 print('Hello Civil Engineering!')
2 print('Welcome to Applied Numerical Methods ')

• What is print()?

◦ A function that displays text
◦ Anything in quotes is text (string)

4 / 47

https://colab.research.google.com

Environment Core Concepts in Python Introduction to NumPy

Quizzes Now!

• Today’s participation (ungraded survey): Please check out

“Class Participation Quiz 5”

Time slot: 2:30PM – 3:00PM

on Canvas.

• Online engagement (graded quizzes)

“Quiz 5” (11 questions)

Deadline: 11:59PM, January 26, 2026

on Canvas.

5 / 47

Environment Core Concepts in Python Introduction to NumPy

Variables: Storing Data

Variables are containers for data

1 # Assign values to variables

2 length = 10.5 # meters

3 width = 5.2 # meters

4 material = 'Steel'

Rules for variable names:

1. Start with letter or underscore

2. Can contain letters, numbers, underscores

3. Case-sensitive: Length ̸= length

4. Descriptive names recommended

5. Avoid Python keywords, e.g., lambda, class, list, def, etc.

Examples:

1 length = 4

2 Length = 4.5

3 print('length = {}'.format(length))
4 print('Length = {}'.format(Length))

6 / 47

Environment Core Concepts in Python Introduction to NumPy

Basic Data Types

Four essential types

• Integers: Whole numbers . . . ,−2,−1, 0, 1, 2, . . .

1 length = 4

• Floats: Decimal numbers

1 deflection = 0.025 # meters

• Strings: Text

1 material = 'Steel'

• Booleans: True/False

1 a = True

2 if a is True:

3 print (1)

4 else:

5 print (0)

7 / 47

Environment Core Concepts in Python Introduction to NumPy

Checking Data Types

• Use type() function:

1 # Check types

2 length = 4

3 print(type(length)) # <class 'int '>
4

5 deflection = 0.025

6 print(type(deflection)) # <class 'float '>
7

8 material = 'Steel'
9 print(type(material)) # <class 'str '>

10

11 safe = True

12 print(type(safe)) # <class 'bool '>

• Why check types?

◦ Different operations work with different types
◦ Avoid errors like adding string to number
◦ Understand what your code is doing

8 / 47

Environment Core Concepts in Python Introduction to NumPy

Basic Arithmetic Operations

Python programming example.

1 a = 2

2 b = 3

3 print(a + b) # plus

4 print(a - b) # minus

5 print(a * b) # product

6 print(a / b) # division

7 print(a ** 2) # quadratic function

8 print(a ** 3) # cubic function

Corresponding arithmetic operations:

Line 3: a+ b

Line 4: a− b

Line 5: a · b

Line 6:
a

b

Line 7: a2

Line 8: a3

Note: a ** n refers to a to the power of n, or an (n is not only an integer).

9 / 47

Environment Core Concepts in Python Introduction to NumPy

Basic Arithmetic Operations

Engineering example.

• Definition of normal stress:

σ =
F

A

where

◦ F = 5000 N (force)
◦ A = 0.01 m2 (area)

1 force = 5000 # N

2 area = 0.01 # m^2

3 stress = force / area # Pa

4 print('stress = {}'.format(stress))

Area
A = 0.01 m2

F = 5000 N

10 / 47

Environment Core Concepts in Python Introduction to NumPy

Order of Operations

Python follows PEMDAS:

1. Parentheses ()

2. Exponents

3. Multiplication

4. Division

5. Addition

6. Subtraction

1 # Different results!

2 a1 = 10 + 5 * 2 # (5*2 first)

3 a2 = (10 + 5) * 2 # (parentheses first)

a1 = 10 + 5× 2 a2 = (10 + 5)× 2

11 / 47

Environment Core Concepts in Python Introduction to NumPy

Order of Operations

Python follows PEMDAS:

1. Parentheses

2. Exponents

3. Multiplication

4. Division

5. Addition

6. Subtraction

Which one is correct?
c =

w

24 · E · I

1 w = 10 ** 4 # uniform load

2 E = 2 * 10 ** 11 # modulus

3 I = 3.25 * 10 ** (-4) # moment of inertia

4 c1 = w / 24 * E * I

5 c2 = w / (24 * E * I)

12 / 47

Environment Core Concepts in Python Introduction to NumPy

Lists: Storing Multiple Values

• Lists store collections of data

1 # List of beam deflections (mm)

2 deflections = [12.3, 15.7, 18.2, 14.9, 16.5]

3 print(deflections) # [12.3, 15.7, 18.2, 14.9, 16.5]

4

5 # List of materials

6 materials = ['Steel ', 'Concrete ', 'Timber ', 'Aluminum ']
7

8 # Access elements (0-indexed !)

9 print(deflections [0]) # First: 12.3

10 print(deflections [-1]) # Last: 16.5

• List operations for engineering data

1 print(len(deflections)) # Number of deflections

2 print(min(deflections)) # Minimum deflection

3 print(max(deflections)) # Maximum deflection

4 print(sum(deflections)) # Total

5 print(sum(deflections)/len(deflections)) # Average

13 / 47

Environment Core Concepts in Python Introduction to NumPy

Lists: Storing Multiple Values

• Lists store collections of data

1 # List of beam deflections (mm)

2 deflections = [12.3, 15.7, 18.2, 14.9, 16.5]

3 print(deflections) # [12.3, 15.7, 18.2, 14.9, 16.5]

4

5 # List of materials

6 materials = ['Steel ', 'Concrete ', 'Timber ', 'Aluminum ']
7

8 # Access elements (0-indexed !)

9 print(deflections [0]) # First: 12.3

10 print(deflections [-1]) # Last: 16.5

• List operations for engineering data

1 print(len(deflections)) # Number of deflections

2 print(min(deflections)) # Minimum deflection

3 print(max(deflections)) # Maximum deflection

4 print(sum(deflections)) # Total

5 print(sum(deflections)/len(deflections)) # Average

14 / 47

Environment Core Concepts in Python Introduction to NumPy

Conditionals (if/elif/else)

• Make decisions in code:

1 stress = 235 # MPa

2

3 if stress > 250:

4 print('WARNING: Stress exceeds yield strength!')
5 elif stress > 200:

6 print('Alert: Stress approaching limit')
7 else:

8 print('Stress within safe limits ')

• Comparison operators:

◦ > greater than
◦ < less than
◦ >= greater or equal
◦ <= less or equal
◦ == equal to
◦ != not equal to

15 / 47

Environment Core Concepts in Python Introduction to NumPy

Conditionals (if/elif/else)

• Make decisions in code:

1 stress = 235 # MPa

2

3 if stress > 250:

4 print('WARNING: Stress exceeds yield strength!')
5 elif stress > 200:

6 print('Alert: Stress approaching limit')
7 else:

8 print('Stress within safe limits ')

• Comparison operators:

◦ > greater than
◦ < less than
◦ >= greater or equal
◦ <= less or equal
◦ == equal to
◦ != not equal to

16 / 47

Environment Core Concepts in Python Introduction to NumPy

Logical Operators (and/or/not)

• Use the logical operator and:

1 stress = 235

2

3 if stress <= 250 and stress > 200:

4 print('Alert!')
5 else:

6 print('Others ')

• Use the logical operator or:

1 stress = 235

2

3 if stress > 250 or stress > 200:

4 print('At least alert!')
5 else:

6 print('Safe!')

17 / 47

Environment Core Concepts in Python Introduction to NumPy

for Loop: Repeating Tasks

• Process each item in a sequence:

1 # List of beam deflections

2 deflections = [12.3, 15.7, 18.2, 14.9, 16.5] # mm

3

4 # Check each beam

5 for d in deflections:

6 if d > 15:

7 print('Deflection exceeds limit')
8 else:

9 print('Deflection is OK')

• Common pattern: Process each item in experimental data

18 / 47

Environment Core Concepts in Python Introduction to NumPy

range() Function for Numerical Loops

• Generate sequences of numbers:

1 # Count from 0 to 4

2 for i in range (5):

3 print(i)

4

5 # With start and end

6 for i in range(2, 6):

7 print(i)

8

9 # With step

10 for i in range(0, 10, 2):

11 print(i)

Line 2-3 Result: 0, 1, 2, 3, 4

Line 6-7 Result: 2, 3, 4, 5

Line 10-11 Result: 0, 2, 4, 6, 8

19 / 47

Environment Core Concepts in Python Introduction to NumPy

range() Function for Numerical Loops

• Generate sequences of numbers:

1 # Count from 0 to 4

2 for i in range (5):

3 print(i)

4

5 # With start and end

6 for i in range(2, 6):

7 print(i)

8

9 # With step

10 for i in range(0, 10, 2):

11 print(i)

Line 2-3 Result: 0, 1, 2, 3, 4

Line 6-7 Result: 2, 3, 4, 5

Line 10-11 Result: 0, 2, 4, 6, 8

20 / 47

Environment Core Concepts in Python Introduction to NumPy

while Loop: Repeat Until Condition

• Repeat while condition is true:

1 a = [1, 2, 3, 4, 5, 6, 7, 8]

2 i = 0

3 while a[i] < 6:

4 print(a[i])

5 i = i + 1

Result: 0, 1, 2, 3, 4, 5

21 / 47

Environment Core Concepts in Python Introduction to NumPy

Functions: Reusable Code Blocks

• Quadratic formula. Given ax2 + bx+ c = 0 (a ̸= 0), the quadratic
formula is

x =
−b±

√
b2 − 4ac

2a

1 import numpy as np

2

3 def quad_formula(a, b, c):

4 t = np.sqrt(b**2 - 4*a*c)

5 x1 = (-b + t) / (2*a)

6 x2 = (-b - t) / (2*a)

7 return x1, x2

Line 4 Compute t =
√
b2 − 4ac

Line 5 Compute x1 =
−b+ t

2a

Line 6 Compute x2 =
−b− t

2a

22 / 47

Environment Core Concepts in Python Introduction to NumPy

Functions: Reusable Code Blocks

• Given parameters: uniform load w = 1× 104 kg/m, modulus
E = 2× 1011 Pa, and moment of inertia I = 3.25× 10−4 m4.

• Compute the constant factor:

c =
w

24 · E · I =
104

24× (2× 1011)× (3.25× 10−4)
= 6.41× 10−6

1 import numpy as np

2

3 def const(w, E, I):

4 return w / (24 * E * I)

5

6 w = 10 ** 4 # uniform load

7 E = 2 * 10 ** 11 # modulus

8 I = 3.25 * 10 ** (-4) # moment of inertia

9 c = const(w, E, I) # constant factor

10 print(c)

23 / 47

Environment Core Concepts in Python Introduction to NumPy

Quick Summary

Monday’s Class:

• Python environment (no installation with Colab)

• Introduction to Python: Variables, data types (integer, float, string, and
Boolean).

• Arithmetic operations, order of operations.

• Storing multiple values with lists

• Logical operators (for and while)

• Defining functions by yourself

24 / 47

Environment Core Concepts in Python Introduction to NumPy

Assignment 1

• Correction: Question 1b.

Euler’s Method for a Simple ODE (Numerical Computing).

dy

dx
= x+ y, y(0) = 1

The analytical solution is

y(x) = 2ex − x− 1

because
dy

dx
= 2ex − 1 = x+ (2ex − x− 1) = x+ y

• Questions 2b, 3b. Please use Python programming

◦ Bungee jumping velocity model: Time step size ∆t = 0.1 s
◦ Cantilever beam deflection: Step size ∆x = 0.125m

25 / 47

Environment Core Concepts in Python Introduction to NumPy

Exam 1

• Exam Information

◦ Date: February 20, 2026
◦ Time: 2:30PM – 3:20PM
◦ Written Exam
◦ 15% in your final score

• Format

◦ 20 quiz questions (40 points in total): All selected from the
quizzes sessions

◦ Numerical computing tests (≈ 45 points)
◦ Python programming tests (≈ 15 points): I will give you Python

codes, please write down the results.

• How can I help?

◦ Review classes on February 16/18, 2026

• Maximum Tolerance: Given the scores of Exam 1 and Exam 2 as a and
b, respectively, only in the case of b > a, then your score for both exams
will become b.

26 / 47

Environment Core Concepts in Python Introduction to NumPy

Quizzes Now!

• Today’s participation (ungraded survey): Please check out

“Class Participation Quiz 6”

Time slot: 2:30PM – 3:00PM

on Canvas.

• Online engagement (graded quizzes)

“Quiz 6” (13 questions)

Deadline: 11:59PM, January 28, 2026

on Canvas.

27 / 47

Environment Core Concepts in Python Introduction to NumPy

Learning Objectives

You should be able to:

• Understand the difference among one-, two- and n-dimensional arrays in
NumPy

• Understand how to apply some linear algebra operations to n-dimensional
arrays without using for-loops

• Understand axis and shape properties for n-dimensional arrays

28 / 47

Environment Core Concepts in Python Introduction to NumPy

Basics

• Why NumPy for Civil Engineering?

◦ Numerical Computing: Solve engineering equations efficiently
◦ Matrix Operations: Structural analysis, stiffness matrices
◦ Data Processing: Sensor data, experimental results
◦ Performance: 50x faster than Python lists for numerical computing

• What is NumPy?

◦ Numerical Python library
◦ n-dimensional arrays as core data structure
◦ Mathematical functions optimized for arrays

29 / 47

Environment Core Concepts in Python Introduction to NumPy

Importing NumPy

• Import convention:

1 import numpy as np

• Why np?

◦ Standard convention in scientific Python
◦ Shorter than typing numpy every time
◦ Everyone uses this convention

30 / 47

Environment Core Concepts in Python Introduction to NumPy

NumPy Arrays vs. Python Lists

• Python Lists

1 a = [2.2, 3.3, 4.1, 5.2, 6.1]

2 b = [1.5, 2.1, 3.8, 4.3, 5.2]

3 c = []

4 for i in range (5):

5 c.append(a[i] * b[i]) # Inefficient!

• NumPy Arrays

1 import numpy as np

2

3 a = np.array ([2.2 , 3.3, 4.1, 5.2, 6.1])

4 b = np.array ([1.5 , 2.1, 3.8, 4.3, 5.2])

5 c = a * b # Fast!

• Key Advantage: Vectorization → Faster computation, cleaner code

31 / 47

Environment Core Concepts in Python Introduction to NumPy

NumPy Arrays vs. Python Lists

• Python Lists

1 a = [2.2, 3.3, 4.1, 5.2, 6.1]

2 b = [1.5, 2.1, 3.8, 4.3, 5.2]

3 c = []

4 for i in range (5):

5 c.append(a[i] * b[i]) # Inefficient!

• NumPy Arrays

1 import numpy as np

2

3 a = np.array ([2.2 , 3.3, 4.1, 5.2, 6.1])

4 b = np.array ([1.5 , 2.1, 3.8, 4.3, 5.2])

5 c = a * b # Fast!

• Key Advantage: Vectorization → Faster computation, cleaner code

32 / 47

Environment Core Concepts in Python Introduction to NumPy

Algebraic Data → NumPy Arrays

• Scalar, e.g., x = 1

1 import numpy as np

2

3 x = np.array (1)

• Vector, e.g., x =


1
2
3
4
5
6

 of length 6

1 x = np.array([1, 2, 3, 4, 5, 6])

• Matrix, e.g., X =

[
1 3 5
2 4 6

]
of 2 rows and 3 columns

1 X = np.array ([[1, 3, 5], [2, 4, 6]])

• Data type (integer, float, string, or boolean?)

1 print(type(X))

33 / 47

Environment Core Concepts in Python Introduction to NumPy

Algebraic Data → NumPy Arrays

• Scalar, e.g., x = 1

1 import numpy as np

2

3 x = np.array (1)

• Vector, e.g., x =


1
2
3
4
5
6

 of length 6

1 x = np.array([1, 2, 3, 4, 5, 6])

• Matrix, e.g., X =

[
1 3 5
2 4 6

]
of 2 rows and 3 columns

1 X = np.array ([[1, 3, 5], [2, 4, 6]])

• Data type (integer, float, string, or boolean?)

1 print(type(X))

34 / 47

Environment Core Concepts in Python Introduction to NumPy

Algebraic Data → NumPy Arrays

A system of linear equations.

• Let’s solve: {
3x+ 2y = 5

x− y = 0
⇒

[
3 2
1 −1

] [
x
y

]
=

[
5
0

]
• Try to solve by hand, and then check with Python.

• Define matrix A and vector b:

Line 3: A =

[
3 2
1 −1

]
Line 4: b =

[
5
0

]
1 import numpy as np

2

3 A = np.array ([[3, 2], [1, -1]])

4 b = np.array([5, 0])

5 solution = np.linalg.solve(A, b)

6 print('Solution (x, y):', solution)

35 / 47

Environment Core Concepts in Python Introduction to NumPy

Creating Arrays with Built-In Functions

• Line 3: Matrix of ones (Fill with ones)

A =

[
1 1 1 1
1 1 1 1

]
• Line 4: Matrix of zeros (Filling with zeros)

B =

[
0 0 0 0
0 0 0 0

]
• Line 5: Identify matrix (1 on the diagonal and 0 otherwise)

C =

1 0 0
0 1 0
0 0 1


1 import numpy as np

2

3 A = np.ones((2, 4)) # (number of rows , number of

columns)

4 B = np.zeros((2, 4)) # (number of rows , number of

columns)

5 C = np.eye(3) # number of rows/columns

36 / 47

Environment Core Concepts in Python Introduction to NumPy

Creating Sequences with np.arange()

• np.arange(): Like Python’s range(), but returns array

1 import numpy as np

2

3 # Bungee jumping velocity

4 delta_t = 0.1

5 t_start = 0

6 t_end = 20

7 time_step = np.arange(t_start , t_end , delta_t)

8 print(time_step)

will not count t end = 20.

• Toy examples:

1 import numpy as np

2

3 a = np.arange(1, 10, 2) # step size: 2

4 b = np.arange(1, 10, 2.5) # step size: 2.5

a = (1, 3, 5, 7, 9)⊤ b = (1, 3.5, 6, 8.5)⊤

37 / 47

Environment Core Concepts in Python Introduction to NumPy

np.linspace(): Specifying Number of Points

Given ∆x = 0.5, the number of steps is L/∆x = 8.

x0 x1 x2 x3 x4 x5 x6 x7 x8

∆x = 0.5m

x (m)

y (m)

x = 0

L = 4m

1 import numpy as np

2

3 # Equally spaced points between 0 and 4

4 x = np.linspace(0, 4, 5) # 4 / 1 + 1 = 5

5 x = np.linspace(0, 4, 9) # 4 / 0.5 + 1 = 9

38 / 47

Environment Core Concepts in Python Introduction to NumPy

Basic Operations: Element-Wise Product

• Vectors of the same length, e.g.,

a = (20, 30, 40, 50)⊤ b = (0, 1, 2, 3)⊤

1 import numpy as np

2

3 a = np.array ([20, 30, 40, 50])

4 b = np.array([0, 1, 2, 3])

5 # b = np.arange (4)

6 c = a * b # new array

7 print(c)

• Matrices of the same size, e.g.,

A =

[
1 2
3 4

]
B =

[
5 6
7 8

]
1 A = np.array ([[1, 2], [3, 4]])

2 B = np.array ([[5, 6], [7, 8]])

3 C = A * B

4 print(c)

39 / 47

Environment Core Concepts in Python Introduction to NumPy

Basic Operations: Element-Wise Product

• Vectors of the same length, e.g.,

a = (20, 30, 40, 50)⊤ b = (0, 1, 2, 3)⊤

1 import numpy as np

2

3 a = np.array ([20, 30, 40, 50])

4 b = np.array([0, 1, 2, 3])

5 # b = np.arange (4)

6 c = a * b # new array

7 print(c)

• Matrices of the same size, e.g.,

A =

[
1 2
3 4

]
B =

[
5 6
7 8

]
1 A = np.array ([[1, 2], [3, 4]])

2 B = np.array ([[5, 6], [7, 8]])

3 C = A * B

4 print(c)

40 / 47

Environment Core Concepts in Python Introduction to NumPy

Matrix-Vector Multiplication

A system of linear equations.

• Let’s solve:{
3x+ 2y = 5

x− y = 0
⇒

[
3 2
1 −1

] [
x
y

]
=

[
5
0

]
⇒

{
x = 1

y = 1

1 import numpy as np

2

3 A = np.array ([[3, 2], [1, -1]])

4 xy = np.array([1, 1])

5 b = A @ x # multiplication with the symbol @

6 print(b)

41 / 47

Environment Core Concepts in Python Introduction to NumPy

np.random.rand(): Generating Random Values

np.random.rand() creates an array of the given shape and populate it with
random samples from a uniform distribution over [0, 1).

• np.random.seed() function is used to initialize the pseudo-random
number generator in NumPy

• Generate a vector:

1 import numpy as np

2 np.random.seed (0)

3

4 a = np.random.rand (4)

a = (0.5488135, 0.71518937, 0.60276338, 0.54488318)⊤

• Generate a matrix:

1 import numpy as np

2 np.random.seed (0)

3

4 A = np.random.rand(2, 3)

A =

[
0.5488135 0.71518937 0.60276338
0.54488318 0.4236548 0.64589411

]
42 / 47

Environment Core Concepts in Python Introduction to NumPy

np.reshape(): Reshaping Arrays

• Converting matrix into vector

Given a matrix A =

[
1 2 3
4 5 6

]
, there are two strategies:

1 import numpy as np

2

3 A = np.array ([[1, 2, 3], [4, 5, 6]])

4 a1 = np.reshape(A, (6)) # C-like index ordering

5 print(a1)

6 a2 = np.reshape(A, (6), order = 'F') # Fortran -like

index ordering

7 print(a2)

a1 = (1, 2, 3, 4, 5, 6)⊤ a2 = (1, 4, 2, 5, 3, 6)⊤

43 / 47

Environment Core Concepts in Python Introduction to NumPy

np.reshape(): Reshaping Arrays

• Converting vector into matrix

How about this?

a1 = (1, 2, 3, 4, 5, 6)⊤

1 A1 = np.reshape(a1 , (2, 3)) # C-like index ordering

2 print(A1)

3 A2 = np.reshape(a1 , (2, 3), order = 'F') # Fortran -like

index ordering

4 print(A2)

A1 =

[
1 2 3
4 5 6

]
A2 =

[
1 3 5
2 4 6

]

44 / 47

Environment Core Concepts in Python Introduction to NumPy

Indexing

• Given a vector

1 import numpy as np

2 np.random.seed (0)

3

4 a = np.random.rand (10)

5 print(a)

Result:

1 [0.5488135 0.71518937 0.60276338 0.54488318 0.4236548

0.64589411 0.43758721 0.891773 0.96366276

0.38344152]

• Indexing

1 i = 1

2 j = 7

3 print(a[i]) # 2nd

4 print(a[j]) # 8th

5 print(a[i :]) # 2nd to the last

6 print(a[: j]) # 1st to 7th

7 print(a[i : j]) # 2nd to 7th

45 / 47

Environment Core Concepts in Python Introduction to NumPy

Indexing

• Given a matrix

1 import numpy as np

2 np.random.seed (0)

3

4 A = np.random.rand(7, 5)

5 print(A)

6 print(A[2 : 4, 3 : 5])

A =



0.5488135 0.71518937 0.60276338 0.54488318 0.4236548
0.64589411 0.43758721 0.891773 0.96366276 0.38344152
0.79172504 0.52889492 0.56804456 0.92559664 0.07103606
0.0871293 0.0202184 0.83261985 0.77815675 0.87001215
0.97861834 0.79915856 0.46147936 0.78052918 0.11827443
0.63992102 0.14335329 0.94466892 0.52184832 0.41466194
0.26455561 0.77423369 0.45615033 0.56843395 0.0187898



46 / 47

Environment Core Concepts in Python Introduction to NumPy

Quick Summary

Wednesday’s Class:

• Difference between NumPy array and Python list

• Writing of algebraic data with NumPy arrays

• Built-in functions, e.g., np.ones(), np.zeros(), and np.eye()

• NumPy sequences with np.arange() (set step size)

• NumPy sequences with np.linspace() (set the number of steps)

• Basic operations: Element-wise product * and matrix-vector
multiplication @ (“at” symbol)

• Random value generation with np.random.rand()

• Reshaping arrays (matrix to vector, or vector to matrix): np.reshape()

• Indexing

47 / 47

	Environment
	Core Concepts in Python
	Introduction to NumPy

