
Applied Numerical Methods for Civil Engineering

CGN 3405 - 0002

Week 2: Mathematical Modeling & Engineering Problem
Solving

Xinyu Chen

Assistant Professor

University of Central Florida

How to understand

Applied Numerical Methods for Civil Engineering?

Numerical methods are techniques by which mathematical problems are
formulated so that they can be solved with arithmetic operations.

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

Engineering Problem Solving Process

Problem definition Mathematical model

Problem-solving tools:
computers, statistics,

numerical methods, graphics

Numeric or graphic results
Societal interfaces:

scheduling, optimization,
communication, public interaction

Implementation

Theory
& Data

Real-world
application

Analysis and
visualization

3 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

Bungee Jumping

Engineering Task.

• A bungee jumping company
needs to predict velocity vs.
time during free fall to design
safe bungee cords.

• Key Questions:

◦ What is the maximum
velocity reached?
(Safe limit: 45m/s)

◦ How long
until maximum velocity?

◦ What cord length is
needed?

4 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

Physical Forces Fg and Fa

Two Main Forces: Physical Forces Acting on Jumper

F = Fg − Fa = m · g − cd · v2

• Gravity (Downward)

Fg = m · g

with

◦ m = mass (kg)
◦ g = 9.81m/s2, gravitational

acceleration

• Air Resistance (Upward)

Fa = cd · v2

with

◦ cd = drag coefficient (kg/m)
◦ v = velocity

Jumper
m

Fg = m · g
Gravity (Downward)

Fa = cd · v2
Air Resistance (Upward)

Velocity v

5 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

Newton’s Second Law

Mathematical Model - Newton’s Second Law

• From F = m · a:

F = m
dv

dt
= m · g − cd · v2

• Divide by m:
dv

dt
= g − cd

m
v2︸ ︷︷ ︸

Ordinary Differential Equation!!!

in terms of the differential rate of change in velocity.

• Initial condition:
v(0) = 0 (starts from rest)

• Problem definition: Solve the velocity of the jumper in free fall as a
function of time.

• Why Numerical Methods?

◦ Real engineering problems often do not have simple analytical
solutions!

6 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

Euler’s Method (Numerical)

Euler’s Method - The Simplest Numerical Approach

• Essential idea:

Approximate continuous change with a small discrete time step size ∆t.

• Rewrite the formula of bungee jumper velocity:

vt+∆t︸ ︷︷ ︸
new

=vt +∆t · dvt
dt

= vt︸︷︷︸
old

+ ∆t︸︷︷︸
time step size

·
(
g − cd

m
v2t

)
︸ ︷︷ ︸

acceleration

from the ordinary differential equation:

dv

dt
= g − cd

m
v2

7 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

Euler’s Method (Numerical)

Euler’s Method - The Simplest Numerical Approach

• Formula of bungee jumper velocity:

vt+∆t︸ ︷︷ ︸
new

= vt︸︷︷︸
old

+ ∆t︸︷︷︸
time step size

·
(
g − cd

m
v2t

)
︸ ︷︷ ︸

acceleration

• Computing bungee jumper velocity (step-by-step):

◦ Start at t = 0 and v = 0
◦ Repeat across different time steps:

◦ Compute acceleration:

a = g − cd
m

v2t

◦ Update velocity:

vt+∆t = vt +∆t · a

◦ Increment time step: t = t+∆t

8 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

A Real Case

Input. Mass m = 50 kg, g = 9.81m/s2, drag coefficient cd = 0.25 kg/m, and
initial velocity v0 = 0. (Given time step size ∆t = 1 s)
Output. Bungee jumper velocity vt.

• At time t = 1:

a = g − cd
m

v20 = 9.81− 0.005× 02 = 9.81

v1 = v0 +∆t · a = 0 + 9.81 = 9.81

• At time t = 2:

a = g − cd
m

v21 = 9.81− 0.005× 9.812 = 9.33

v2 = v1 +∆t · a = 9.81 + 1× 9.33 = 19.14

• At time t = 3

a = g − cd
m

v22 = 9.81− 0.005× 19.142 = 7.98

v3 = v2 +∆t · a = 19.14 + 1× 7.98 = 27.12

• · · ·

9 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

A Real Case

Input. Mass m = 50 kg, g = 9.81m/s2, drag coefficient cd = 0.25 kg/m, and
initial velocity v0 = 0. (Given time step size ∆t = 1 s)
Output. Bungee jumper velocity vt.

• At time t = 1:

a = g − cd
m

v20 = 9.81− 0.005× 02 = 9.81

v1 = v0 +∆t · a = 0 + 9.81 = 9.81

• At time t = 2:

a = g − cd
m

v21 = 9.81− 0.005× 9.812 = 9.33

v2 = v1 +∆t · a = 9.81 + 1× 9.33 = 19.14

• At time t = 3

a = g − cd
m

v22 = 9.81− 0.005× 19.142 = 7.98

v3 = v2 +∆t · a = 19.14 + 1× 7.98 = 27.12

• · · ·
10 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

The Basic Syntax of a for Loop in Python

Description.

• A for loop in Python is a control flow statement used to iterate over
items of any sequence (such as a list, tuple, string, set, or dictionary) in
the order that they appear.

• It is primarily used when you need to execute a block of code a specific,
predetermined number of times or for each item in a collection.

11 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

The Basic Syntax of a for Loop in Python

Fibonacci Sequence.

• Definition: Given f(1) = f(2) = 1, the Fibonacci sequence takes the
form of

f(n) = f(n− 1) + f(n− 2), n > 2

• Write down f(3), f(4), f(5), f(6), f(7), · · · by yourself?

f(3) = f(2) + f(1) = 2

f(4) = f(3) + f(2) = 3

f(5) = f(4) + f(3) = 5

f(6) = f(5) + f(4) = 8

f(7) = f(6) + f(5) = 13

12 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

The Basic Syntax of a for Loop in Python

Fibonacci Sequence.

• Definition: Given f(1) = f(2) = 1, the Fibonacci sequence takes the
form of

f(n) = f(n− 1) + f(n− 2), n > 2

• Write down f(3), f(4), f(5), f(6), f(7), · · · by yourself?

f(3) = f(2) + f(1) = 2

f(4) = f(3) + f(2) = 3

f(5) = f(4) + f(3) = 5

f(6) = f(5) + f(4) = 8

f(7) = f(6) + f(5) = 13

13 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

The Basic Syntax of a for Loop in Python

Fibonacci Sequence.

• Definition: Given f(1) = f(2) = 1, the Fibonacci sequence takes the
form of

f(n) = f(n− 1) + f(n− 2), n > 2

• Python programming

1 import numpy as np

2

3 def fib(n): # Input n>2

4 f = np.zeros(n)

5 f[0] = 1

6 f[1] = 1

7 for i in range(2, n):

8 f[i] = f[i - 1] + f[i - 2]

9 return f[n - 1]

14 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

Python Programming for Euler’s Method

• Python programming example. Computing bungee jumper velocity:

◦ Start at t = 0 and v = 0
◦ Repeat across different time steps:

◦ Compute acceleration:

a = g − cd
m

v2t

◦ Update velocity:

vt+∆t = vt +∆t · a

◦ Increment time step: t = t+∆t

1 import numpy as np

2

3 def euler(m, g, cd, v0, delta_t , time_steps):

4 v = np.zeros(time_steps) # Velocity

5 v[0] = v0 # Initial velocity

6 for i in range(time_steps - 1): # Repeat

7 a = g - cd / m * (v[i] ** 2) # Acceleration

8 v[i + 1] = v[i] + delta_t * a # Velocity

9 return v
15 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

A Real Case

• Mass: m = 50 kg

• Gravitational acceleration: g = 9.81m/s2

• Drag coefficient: cd = 0.25 kg/m

1 import numpy as np

2

3 # Parameters

4 m = 50 # Mass (kg)

5 g = 9.81 # Gravitational acceleration (m/s^2)

6 cd = 0.25 # Drag coefficient

7 v0 = 0 # Initial velocity

8

9 # Time setup

10 delta_t = 1 # Time step size

11 t_end = 20 # Total time

12 time_steps = int(t_end / delta_t) + 1

13

14 # Euler 's method

15 t = np.linspace(0, t_end , time_steps)

16 v = euler(m, g, cd, v0, delta_t , time_steps)

16 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

Velocity vs. Time

Bungee jumper velocity vs. time (w/ air resistance)

• Comparison between ∆t = 1 s and ∆t = 0.1 s

• Input: m = 50 kg, g = 9.81m/s2, and cd = 0.25 kg/m

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50
Terminal velocity ≈ 44.29 m/s

Rapid acceleration phase

Terminal velocity phase

Time (s)

V
el
o
ci
ty

(m
/
s)

Time step size ∆t = 1 s

Time step size ∆t = 0.1 s

17 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

Velocity vs. Time

Terminal velocity (solving a simple quadratic equation):

a = g − cd
m

v2 = 0︸ ︷︷ ︸
acceleration = 0

⇒ v =

√
mg

cd

In this case:

v =

√
mg

cd
=

√
50× 9.81

0.25
= 44.29m/s

Numerical method insight.

• Demonstrates importance of time step selection in simulations

• Fine time steps give more accurate results

• Coarse time steps are faster to compute but less accurate

18 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

Numerical vs. Analytical Solution

Going back to the ordinary differential equation:

dv

dt
= g − cd

m
v2

which has solution:

vt =

√
mg

cd
tanh

(√
gcd
m

t

)
tangent: tanh (x) =

e2x − 1

e2x + 1

1 import numpy as np

2

3 def analytical_solution(m, g, cd, t):

4 v_term = np.sqrt(m * g / cd)

5 v_analytical = v_term * np.tanh(np.sqrt(g * cd / m) * t)

6 return v_analytical

1 delta_t = 1 # Time step size

2 t_end = 20 # Total time

3 time_steps = int(t_end / delta_t) + 1

4

5 # Computing the analytical solution

6 t = np.linspace(0, t_end , time_steps)

7 v_analytical = analytical_solution(m, g, cd, t)
19 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

Numerical Error Analysis

How to analyze errors?

1 error = v - v_analytical

2 plt.plot(t, error , 'red')
3 plt.xlabel('Time (s)')
4 plt.ylabel('Error (m/s)')
5 plt.show()

• Why errors?

◦ Euler method assumes constant acceleration over ∆t.
◦ Smaller ∆t → Smaller error, but more computation.

• Time step comparison:

◦ Time step size ∆t = 1 s: Error ≈ 1.96m/s
◦ Time step size ∆t = 0.1 s: Error ≈ 0.18m/s
◦ Time step size ∆t = 0.01 s: Error ≈ 0.02m/s

• Engineering trade-off: Accuracy vs. Computational cost

20 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

Velocity vs. Time (Different Mass)

Bungee jumper velocity vs. time (w/ air resistance)

• Comparison among mass m = 50 kg, 75 kg, 100 kg

• Input: g = 9.81m/s2, and cd = 0.25 kg/m

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

Physics:
Heavier mass ⇒ Higher velocity vt

Time (s)

V
el
o
ci
ty

(m
/
s)

m = 50 kg (Terminal velocity ≈ 44.29 m/s)

m = 75 kg (Terminal velocity ≈ 54.25 m/s)

m = 100 kg (Terminal velocity ≈ 62.64 m/s)

21 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

Engineering Safety Analysis

Safe limit: Typically 45 m/s (160 km/h) for bungee jumping

• Input: g = 9.81m/s2, and cd = 0.25 kg/m

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

Physics:

Terminal velocity v =

√
mg

cd

Time (s)

V
el
o
ci
ty

(m
/
s)

m = 50 kg (Terminal velocity ≈ 44.29 m/s)

m = 75 kg (Terminal velocity ≈ 54.25 m/s)

m = 100 kg (Terminal velocity ≈ 62.64 m/s)

• Terminal velocity exceeds safe limit? Increase drag coefficient (baggy
clothing); Deploy parachute earlier; Use heavier cord for more drag.

22 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

Parameter Sensitivity

How do mass and drag affect terminal velocity?

1 mass = [75, 100]

2 drag = [0.15 , 0.25, 0.5]

3

4 for m in mass:

5 for cd in drag:

6 v_term = np.sqrt(m * g / cd)

7 print('Mass: {}'.format(m))
8 print('Drag coefficient: {}'.format(cd))
9 print('Terminal velocity: {}'.format(v_term))

10 print()

Results:

• Lighter jumpers → Lower terminal velocity

• Higher drag coefficient → Lower terminal velocity

• Design implication: Need different cords for different jumper weights!

23 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

Quizzes Now!

• Today’s participation (ungraded survey): Please check out

“Class Participation Quiz 3”

Time slot: 3:00PM – 3:30PM

on Canvas.

• Online engagement (graded quizzes)

“Quiz 3” (14 questions)

Deadline: 11:59PM, January 21, 2026

on Canvas.

24 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

Quick Summary

Wednesday’s Class:

• Bungee jumping velocity vs. time

◦ Newton’s second law F = Fg − Fa = mg − cd · v2 = m · a
◦ Ordinary differential equation (the differential rate of change in

velocity → acceleration)

dv

dt
= g − cd

m
v2︸ ︷︷ ︸

acceleration

◦ Euler’s method for numerical computing

vt+∆t︸ ︷︷ ︸
new

= vt︸︷︷︸
old

+ ∆t︸︷︷︸
time step size

·
(
g − cd

m
v2t

)
︸ ︷︷ ︸

acceleration

◦ Numerical error analysis
◦ Sensitivity across different parameters

• Python programming

◦ Fibonacci sequence
◦ Numerical computing

25 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

Quizzes Now!

• Today’s participation (ungraded survey): Please check out

“Class Participation Quiz 4”

Time slot: 2:30PM – 3:00PM

on Canvas.

• Online engagement (graded quizzes)

“Quiz 4” (15 questions)

Deadline: 11:59PM, January 23, 2026

on Canvas.

26 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

Euler’s Method

Euler’s Method is the simplest numerical technique for solving Ordinary
Differential Equations (ODEs).

• It approximates continuous change using small, discrete steps.

• When to use it?

◦ When you know the rate of change
dy

dx
◦ When you need a quick, approximate solution
◦ When other methods are too complex

Bungee jumping velocity vs. time?

• We know the rate of change in velocity:

dv

dt
= g − cd

m
v2

• We need an approximate solution:

vt+∆t︸ ︷︷ ︸
new velocity

= vt︸︷︷︸
old velocity

+ ∆t︸︷︷︸
time step size

· dv

dt︸︷︷︸
acceleration

27 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

Euler’s Method

Euler’s Method is the simplest numerical technique for solving Ordinary
Differential Equations (ODEs).

• It approximates continuous change using small, discrete steps.

• When to use it?

◦ When you know the rate of change
dy

dx
◦ When you need a quick, approximate solution
◦ When other methods are too complex

Bungee jumping velocity vs. time?

• We know the rate of change in velocity:

dv

dt
= g − cd

m
v2

• We need an approximate solution:

vt+∆t︸ ︷︷ ︸
new velocity

= vt︸︷︷︸
old velocity

+ ∆t︸︷︷︸
time step size

· dv

dt︸︷︷︸
acceleration

28 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

Mathematical Formulation

• Example. Given an ODE:

dy

dx
= f(x, y)

with initial condition y(x0) = y0

• Euler’s formula:

yi+1︸︷︷︸
next value

= yi︸︷︷︸
current value

+ ∆x︸︷︷︸
step size

· f(xi, yi)︸ ︷︷ ︸
slope

xi+1 = xi + ∆x︸︷︷︸
step size

• Interpretation:

◦ f(xi, yi) = slope at current point
◦ ∆x = step size (small values!)
◦ step size × slope = predicted change in y
◦ Add to current y to get next y

29 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

Simple Example

• Toy example: Solve
dy

dx
= x+ y

with y(0) = 1, find y(1) using step size ∆x = 0.5.

• ❶ Initialize x0 = 0 and y0 = 1

• ❷ First step (0 → ∆x)

f(x0, y0) = x0+y0 = 1 y1 = y0+∆x·f(x0, y0) = 1.5 x1 = x0+∆x = 0.5

• ❸ Second step (∆x → 2∆x)

f(x1, y1) = x1+y1 = 2 y2 = y1+∆x·f(x1, y1) = 2.5 x2 = x1+∆x = 1

So we have y(1) ≈ y(x2) = 2.5.

• Hint (Keep in mind!):

yi+1︸︷︷︸
next value

= yi︸︷︷︸
current value

+ ∆x︸︷︷︸
step size

· f(xi, yi)︸ ︷︷ ︸
sloop

xi+1 = xi +∆x

30 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

Simple Example

• Toy example: Solve
dy

dx
= x+ y

with y(0) = 1, find y(1) using step size ∆x = 0.5.

• ❶ Initialize x0 = 0 and y0 = 1

• ❷ First step (0 → ∆x)

f(x0, y0) = x0+y0 = 1 y1 = y0+∆x·f(x0, y0) = 1.5 x1 = x0+∆x = 0.5

• ❸ Second step (∆x → 2∆x)

f(x1, y1) = x1+y1 = 2 y2 = y1+∆x·f(x1, y1) = 2.5 x2 = x1+∆x = 1

So we have y(1) ≈ y(x2) = 2.5.

• Hint (Keep in mind!):

yi+1︸︷︷︸
next value

= yi︸︷︷︸
current value

+ ∆x︸︷︷︸
step size

· f(xi, yi)︸ ︷︷ ︸
sloop

xi+1 = xi +∆x

31 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

Simple Example

• Toy example: Solve
dy

dx
= x+ y

with y(0) = 1, find y(1) using step size ∆x = 0.5.

• ❶ Initialize x0 = 0 and y0 = 1

• ❷ First step (0 → ∆x)

f(x0, y0) = x0+y0 = 1 y1 = y0+∆x·f(x0, y0) = 1.5 x1 = x0+∆x = 0.5

• ❸ Second step (∆x → 2∆x)

f(x1, y1) = x1+y1 = 2 y2 = y1+∆x·f(x1, y1) = 2.5 x2 = x1+∆x = 1

So we have y(1) ≈ y(x2) = 2.5.

• Hint (Keep in mind!):

yi+1︸︷︷︸
next value

= yi︸︷︷︸
current value

+ ∆x︸︷︷︸
step size

· f(xi, yi)︸ ︷︷ ︸
sloop

xi+1 = xi +∆x

32 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

Cantilever Beam Deflection

Engineering Task.

• Calculate the deflection of a cantilever beam under uniform load.

• Needed for: Building codes, safety checks, material selection.

w = 1× 104 kg/m

x (m)

y (m)

x = 0

L = 4m

33 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

Cantilever Beam Deflection

Engineering Task.

• Calculate the deflection of a cantilever beam under uniform load.

• Needed for: Building codes, safety checks, material selection.

w = 1× 104 kg/m

y(x)

x (m)

y (m)

x = 0

L = 4m

34 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

Cantilever Beam Deflection

• Use Euler’s method to find deflection y(x) from x = 0 to x = L.

• y(x) is downward deflection at point x (x is distance from fixed end).

• Given parameters:

◦ Uniform load: w = 1× 104 kg/m
◦ Beam length: L = 4m
◦ Modulus: E = 2× 1011 Pa (steel)
◦ Moment of inertia: I = 3.25× 10−4 m4

w = 1× 104 kg/m

y(x)

x (m)

y (m)

x = 0

L = 4m

35 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

Cantilever Beam Deflection

• Use Euler’s method to find deflection y(x) from x = 0 to x = L.

dy

dx
=

w

24 · E · I︸ ︷︷ ︸
constant

(4x3 − 12Lx2 + 12L2x)

• x is distance from fixed end.

• y(x) is downward deflection at point x.

• Given parameters:

◦ Uniform load: w = 1× 104 kg/m
◦ Beam length: L = 4m
◦ Modulus: E = 2× 1011 Pa (steel)
◦ Moment of inertia: I = 3.25× 10−4 m4

• Compute the constant factor:

c =
w

24 · E · I =
104

24× (2× 1011)× (3.25× 10−4)
= 6.41× 10−6

36 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

Euler’s Method (Numerical)

• Idea: Given the step size ∆x = 0.25m, we start from y(0) = 0 and
update the deflection by

yi+1︸︷︷︸
next deflection

= yi︸︷︷︸
current deflection

+ ∆x︸︷︷︸
step size

· dy

dx︸︷︷︸
sloop

update the position by

xi+1︸︷︷︸
next position

= xi︸︷︷︸
current position

+ ∆x︸︷︷︸
step size

where the sloop is given by

dy

dx
= c(4x3 − 12Lx2 + 12L2x)

• Number of steps (repeat for loop)

L

∆x
=

4

0.25
= 16 steps

• Compute the constant factor:

c =
w

24 · E · I =
104

24× (2× 1011)× (3.25× 10−4)
= 6.41× 10−6

37 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

Python Programming

Compute the constant factor with Python programming.

• Given parameters: uniform load w = 1× 104 kg/m, modulus
E = 2× 1011 Pa, and moment of inertia I = 3.25× 10−4 m4.

• Compute the constant factor:

c =
w

24 · E · I =
104

24× (2× 1011)× (3.25× 10−4)
= 6.41× 10−6

1 import numpy as np

2

3 def const(w, E, I):

4 return w / (24 * E * I)

5

6 w = 10 ** 4 # uniform load

7 E = 2 * 10 ** 11 # modulus

8 I = 3.25 * 10 ** (-4) # moment of inertia

9 c = const(w, E, I) # constant factor

10 print(c)

38 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

Python Programming

• Update deflection and position:

yi+1︸︷︷︸
next

= yi︸︷︷︸
current

+ ∆x︸︷︷︸
step size

· dy

dx︸︷︷︸
sloop

xi+1︸︷︷︸
next

= xi︸︷︷︸
current

+ ∆x︸︷︷︸
step size

with L
∆x

= 16 steps and sloop

dy

dx
= c(4x3 − 12Lx2 + 12L2x)

4*x**3 − 12*L*x**2 + 12*L**2*x

1 def sloop(c, L, x):

2 return c * (4*x**3 - 12*L*x**2 + 12*L**2*x)

3

4 L = 4 # beam length

5 delta_x = 0.25 # step size

6 n = int(L / delta_x) # number of steps

7 x = np.linspace(0, L, n + 1)

8 y = np.zeros(n + 1)

9 for i in range(n):

10 y[i + 1] = y[i] + delta_x * sloop(c, L, x[i])

39 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

Numerical vs. Analytical Solution

Observing the first-order derivative of polynomials:

dy

dx
= c(4x3 − 12Lx2 + 12L2x)

• Write down the analytical solution?

y(x) = c(x4 − 4Lx3 + 6L2x2)

x**4 − 4*L*x**3 + 6*L**2*x**2

1 import numpy as np

2

3 w = 10 ** 4

4 E = 2 * 10 ** 11

5 I = 3.25 * 10 ** (-4)

6 c = const(w, E, I)

7 delta_x = 0.25

8 n = int(L / delta_x)

9 x = np.linspace(0, L, n + 1)

10 y = np.zeros(n + 1)

11 for i in range(1, n + 1):

12 y_analytical[i] = c * (x[i]**4 - 4*L*x[i]**3 + 6*L**2*x[

i]**2)
40 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

Numerical Error Analysis

Deflection table (numerical vs. analytical solution).

error = |yanalytical − ynumerical| with | · | denoting absolute value

Distance x Analytical solution Numerical solution Error

0.25 0.00003688 0
0.50 0.00014143 0.00007222 0.07 mm
0.75 0.00030491 0.00020763 · · ·
1.00 0.00051923 0.00039784
1.25 0.00077687 0.00063502
1.50 0.00107091 0.00091196
1.75 0.00139506 0.00122206
2.00 0.00174359 0.00155929
2.25 0.00211140 0.00191827
2.50 0.00249399 0.00229417
2.75 0.00288744 0.00268279
3.00 0.00328846 0.00308053
3.25 0.00369434 0.00348438
3.50 0.00410296 0.00389193 0.21 mm
3.75 0.00451285 0.00430138 0.21 mm
4.00 0.00492308 0.00471154 0.21 mm

Note: 1meter = 1, 000millimeter (mm). 41 / 42

Introduction Bungee Jumping Velocity Euler’s Method Cantilever Beam Deflection

Quick Summary

Friday’s Class:

• Apply Euler’s method to engineering problem

• Compute numerical vs. analytical solutions

• Understand error accumulation

• Implement numerical methods with Python

42 / 42

	Introduction
	Bungee Jumping Velocity
	Euler's Method
	Cantilever Beam Deflection

