Applied Numerical Methods for Civil Engineering

CGN 3405 - 0002

Week 2: Mathematical Modeling & Engineering Problem
Solving

Xinyu Chen
Assistant Professor

University of Central Florida

How to understand

Applied Numerical Methods for Civil Engineering?

Numerical methods are techniques by which mathematical problems are
formulated so that they can be solved with arithmetic operations.

Introduction
°

Engineering Problem Solving Process

Theory
& Data

Problem-solving tools:
Problem definition Mathematical model computers, statistics,
numerical methods, graphics

Societal interfaces:
Implementation scheduling, optimization, Numeric or graphic results
communication, public interaction

Real-world Analysis and
application visualization

3/42

Bungee Jumping Velocity
0000000000000 0000000

Bungee Jumping

Engineering Task.

® A bungee jumping company
needs to predict velocity vs.
time during free fall to design
safe bungee cords.

® Key Questions:

o What is the maximum
velocity reached?
(Safe limit: 45m/s)
o How long
until maximum velocity?
o What cord length is
needed?

4742

Bungee Jumping Velocity

0®@000000000000000000

Physical Forces F; and F,

Two Main Forces: Physical Forces Acting on Jumper

F=F,—Fo=m-g—cq-v"

® Gravity (Downward)

Fo=m-g

with F,=cq- 02

o m = mass (kg) Air Resistance (Upward)

o g=9.81m/s?, gravitational

acceleration
Velocity v
® Air Resistance (Upward)

Fo=cq- v?
Gravity (Downward)
with Fg=m-g
o ¢q = drag coefficient (kg/m)
o v = velocity

5/42

Bungee Jumping Velocity
0000000000000 0000000

Newton’s Second Law

Mathematical Model - Newton’s Second Law

® From F'=m-a:

dv 2
F=lm—=m-g—cq-v

dt
® Divide by m:
do i
dt - m

————
Ordinary Differential Equation!!!
in terms of the differential rate of change in velocity.

® |[nitial condition:
v(0) =0 (starts from rest)

® Problem definition: Solve the velocity of the jumper in free fall as a
function of time.

® Why Numerical Methods?

o Real engineering problems often do not have simple analytical
solutions!

6/42

Bungee Jumping Velocity
000@0000000000000000

Euler’'s Method (Numerical)

Euler's Method - The Simplest Numerical Approach

® Essential idea:
Approximate continuous change with a small discrete time step size At.
® Rewrite the formula of bungee jumper velocity:

dv
Vipar =v¢ + At - =
—— dt

new

Cd

= v + At . (g - —vtz)

~—~ S~~~ m

old time step Size ———
acceleration

from the ordinary differential equation:

dv Cd o

a9 m

7/42

0000@000000000000000
Euler’'s Method (Numerical)

Euler’'s Method - The Simplest Numerical Approach
® Formula of bungee jumper velocity:
Cd 2
Vi At v+ g mvt

new old time step size “>——= ——

acceleration

® Computing bungee jumper velocity (step-by-step):
o Startatt=0and v =0
o Repeat across different time steps:
o Compute acceleration:

Cd 2
Ut
m

a=g-—

o Update velocity:

Vigar = vt + At - a

o Increment time step: t =t + At
8/42

Bungee Jumping Velocity
00000@00000000000000
A Real Case

Input. Mass m = 50kg, g = 9.81 m/s?, drag coefficient c; = 0.25 kg/m, and
initial velocity vg = 0. (Given time step size At = 15)
Output. Bungee jumper velocity v;.

® Attimet=1:
a=g-— jnivg =0.81 — 0.005 x 0> = 9.81
v =vo+At-a=0+9.81 = 9.81
® At timet=2:
a=g— %uf =9.81 —0.005 x 9.81> = 9.33
V2 =v1 + At -a=9.814+1x9.33 =19.14

® Attimet =3

9/42

Bungee Jumping Velocity
00000@00000000000000
A Real Case

Input. Mass m = 50kg, g = 9.81 m/s?, drag coefficient c; = 0.25 kg/m, and
initial velocity vg = 0. (Given time step size At = 15)
Output. Bungee jumper velocity v;.

® Attimet=1:
a=g-— jnivg =0.81 — 0.005 x 0> = 9.81
v =vo+At-a=0+9.81 = 9.81
® At timet =2:
a=g— %uf =9.81 —0.005 x 9.81> = 9.33
vo=v1 +At-a=981+1x9.33=19.14
* Attimet =3
a=g— %v% —9.81 — 0.005 x 19.142 = 7.98
v3=va+At-a=19.144+1 x 7.98 = 27.12

10/42

Bungee Jumping Velocity
000000@0000000000000

The Basic Syntax of a for Loop in Python

Description.

® A for loop in Python is a control flow statement used to iterate over

items of any sequence (such as a list, tuple, string, set, or dictionary) in
the order that they appear.

® |t is primarily used when you need to execute a block of code a specific,
predetermined number of times or for each item in a collection.

11/42

Bungee Jumping Velocity
0000000@000000000000

The Basic Syntax of a for Loop in Python

Fibonacci Sequence.

® Definition: Given f(1) = f(2) = 1, the Fibonacci sequence takes the
form of

fn)=fn-1)+f(n—-2),n>2

® Write down f(3), f(4), f(5), f(6), f(7), --- by yourself?

12/42

Bungee Jumping Velocity
0000000@000000000000

The Basic Syntax of a for Loop in Python

Fibonacci Sequence.

® Definition: Given f(1) = f(2) = 1, the Fibonacci sequence takes the
form of

fn)=fn-1)+f(n—-2),n>2

® Write down f(3), f(4), f(5), f(6), f(7), --- by yourself?
fB)=f2)+f(1)=2
fA)=f3)+f(2)=3
fB)=f(4)+f(3)=5
f6)=r(5)+f(4)=8
f(7) = f(6)+ f(5) =13

13/42

Bungee Jumping Velocity
00000000e00000000000

The Basic Syntax of a for Loop in Python

Fibonacci Sequence.

® Definition: Given f(1) = f(2) = 1, the Fibonacci sequence takes the
form of

fn)=fn—1)+fn—2),n>2

® Python programming

1 import numpy as np

2

3 def fib(m): # Input n>2

4 f = np.zeros(n)

5 f[0] = 1

6 £L1] = 1

7 for i in range (2, n):

8 fLil = £[i - 1] + £f[i - 2]
9 return f[n - 1]

14/42

Bungee Jumping Velocity
000000000e0000000000

Python Programming for Euler’s Method

® Python programming example. Computing bungee jumper velocity:

o Startatt=0and v =0
o Repeat across different time steps:
o Compute acceleration:

o Update velocity:

Cd 2
a=g— —v;

m

Vigar = vt + At - a

o Increment time step: t =t + At

import numpy as np

def euler(m, g, cd, vO, delta_t, time_steps):

v = np.zeros(time_steps)
v[0] = vO
for i in range(time_steps - 1):

a =g -cd / mx* (v[i]l *x 2)
vli + 1] = v[i] + delta_t * a
return v

#

#
#
#
#

Velocity

Initial velocity
Repeat
Acceleration
Velocity

15/42

© N oA W N R

e e e v
o O r W N = O

Bungee Jumpil

Velocity

0000000000e000000000

® Mass: m = 50kg

® Gravitational acceleration: g = 9.81 m/s?

A Real Case

® Drag coefficient: ¢q = 0.25kg/m

import numpy as np

#
m

g
cd
vO

#

de
t_
ti

#
t
v

Parameters
= 50

9.81
= 0.25
=0

Time setup

H OH o H

Mass (kg)

Gravitational acceleration (m/s~2)
Drag coefficient

Initial velocity

lta_t = 1 # Time step size
end = 20 # Total time
me_steps = int(t_end / delta_t) + 1

Euler's method

= np.linspace (0,

euler(m, g,

cd,

t_end, time_steps)
vO, delta_t, time_steps)

16 /42

Bungee Jumping Velocity
00000000000 e@00000000
Velocity vs. Time

Bungee jumper velocity vs. time (w/ air resistance)
® Comparison between At = 1s and At =0.1s
® Input: m = 50kg, g = 9.81m/s?, and cq = 0.25kg/m

50 #
Terminal velocity ~ 44.29 m/s
40 Terminal velocity phase
Q
e 30
> Rapid agceleration phase
‘0
S 20
>
10 A - -
—e— Time step size At =1s
—— Time step size At =0.1s
0 - - - - - - - - - {
0 2 4 6 8 10 12 14 16 18 20

Time (s)

17/42

Bungee Jumping Velocity
000000000000 e0000000

Velocity vs. Time

Terminal velocity (solving a simple quadratic equation):

c m
a:gf—dv2:0 = v= mg
m Cd

acceleration = 0

mg 50 x 9.81
=, —= =/ ——— =442
v V025 9m/s

Numerical method insight.

In this case:

® Demonstrates importance of time step selection in simulations
® Fine time steps give more accurate results

® Coarse time steps are faster to compute but less accurate

18/42

0000000000000 e000000
Numerical vs. Analytical Solution

Going back to the ordinary differential equation:

dv e
dt —9 m

which has solution:

2z
mg gcd e —1
=,/ —tanh (/=—1 tangent: tanh (z) = ——
Vy o an (o) g anh () T

import numpy as np

def analytical_solution(m, g, cd, t):
v_term = np.sqrt(m * g / cd)
v_analytical = v_term * np.tanh(np.sqrt(g * cd / m) * t)
return v_analytical

oG RE W N

delta_t = 1 # Time step size
t_end = 20 # Total time
time_steps = int(t_end / delta_t) + 1

Computing the analytical solution
t = np.linspace(0, t_end, time_steps)
v_analytical = analytical_solution(m, g, cd, t)
19/42

Bungee Jumping Velocity
0000000000000 0e00000

Numerical Error Analysis

How to analyze errors?

error = v - v_analytical
plt.plot(t, error, 'red')
plt.xlabel ('Time (s)')
plt.ylabel ('Error (m/s)')
plt.show ()

QR W N =

® Why errors?

o Euler method assumes constant acceleration over At.
o Smaller At — Smaller error, but more computation.

® Time step comparison:

o Time step size At = 1s: Error = 1.96 m/s
o Time step size At = 0.1s: Error ~ 0.18 m/s
o Time step size At = 0.01s: Error ~ 0.02m/s

® Engineering trade-off: Accuracy vs. Computational cost

20/42

0000000000000 00e0000
Velocity vs. Time (Different Mass)

Bungee jumper velocity vs. time (w/ air resistance)
® Comparison among mass m = 50 kg, 75 kg, 100 kg
® Input: g =9.81m/s?, and cq = 0.25kg/m

60 ,,_ ______________________________________
ol T
£
2 Physics:
§ Heavier mass = Higher velocity v,
(]
= 20 |
—— m = 50 kg (Terminal velocity =~ 44.29 m/s)
—— m = 75 kg (Terminal velocity ~ 54.25 m/s)
—— m = 100 kg (Terminal velocity ~ 62.64 m/s)
0 . . ; ; ; ; ; ; ; {
0 2 4 6 8 10 12 14 16 18 20

Time (s)

21/42

0000000000000 000e000
Engineering Safety Analysis

Safe limit: Typically 45 m/s (160 km/h) for bungee jumping
® Input: g =9.81m/s?, and cq = 0.25kg/m

60 ,,- --------------------------------------
E 40 ,,- ----------- G
E
z Physics:
1%
2 Terminal velocity v = i)
C
= 90| ¢
—— m = 50 kg (Terminal velocity ~ 44.29 m/s)
—— m =75 kg (Terminal velocity ~ 54.25 m/s)
—— m = 100 kg (Terminal velocity ~ 62.64 m/s)
0 : : : : : : :

0 2 4 6 8 1‘0 1‘2 1‘4 16 18 26
Time (s)

® Terminal velocity exceeds safe limit? Increase drag coefficient (baggy
clothing); Deploy parachute earlier; Use heavier cord for more drag.

22/42

Bungee Jumping Velocity
0000000000000 0000e00

Parameter Sensitivity

How do mass and drag affect terminal velocity?

mass = [75, 100]

drag = [0.15, 0.25, 0.5]
for m in mass:
for cd in drag:
v_term = np.sqrt(m * g / cd)
print ('Mass: {}'.format (m))
print ('Drag coefficient: {}'.format(cd))
print ('Terminal velocity: {}'.format(v_term))
print ()
Results:

® Lighter jumpers — Lower terminal velocity
® Higher drag coefficient — Lower terminal velocity

® Design implication: Need different cords for different jumper weights!

23/42

Bungee Jumping Velocity
0000000000000 00000e0

Quizzes Now!

® Today's participation (ungraded survey): Please check out
“Class Participation Quiz 3"
Time slot: 3:00PM - 3:30PM

on Canvas.

® Online engagement (graded quizzes)
“Quiz 3" (14 questions)
Deadline: 11:59PM, January 21, 2026

on Canvas.

24/42

Bungee Jumping Velocity
0000000000000 000000e
Quick Summary

Wednesday’s Class:
® Bungee jumping velocity vs. time
o Newton's second law FF = Fy — F, =mg —cq-v> =m-a
Ordinary differential equation (the differential rate of change in
velocity — acceleration)

[e]

dv Cd o

a4 m
———

acceleration

[e]

Euler's method for numerical computing

Vipar = v + At - (g — Cfdyz)
~—— =~ ~—~—~ m t
new old time step size “—~—

acceleration

o Numerical error analysis
o Sensitivity across different parameters

® Python programming
o Fibonacci sequence
o Numerical computing
25 /42

Euler’'s Method
€000

Quizzes Now!

® Today's participation (ungraded survey): Please check out
“Class Participation Quiz 4"
Time slot: 2:30PM - 3:00PM

on Canvas.

® Online engagement (graded quizzes)
“Quiz 4" (15 questions)
Deadline: 11:59PM, January 23, 2026

on Canvas.

26 /42

0000
Euler’'s Method

Euler’s Method is the simplest numerical technique for solving Ordinary
Differential Equations (ODEs).
® |t approximates continuous change using small, discrete steps.
® When to use it?
o When you know the rate of change %

o When you need a quick, approximate solution
o When other methods are too complex

27 /42

0000
Euler’'s Method

Euler’s Method is the simplest numerical technique for solving Ordinary
Differential Equations (ODEs).
® |t approximates continuous change using small, discrete steps.
® When to use it?
o When you know the rate of change %

o When you need a quick, approximate solution
o When other methods are too complex

Bungee jumping velocity vs. time?
® We know the rate of change in velocity:
dv Cd o

dt m
® \We need an approximate solution:

Vitar = v+ At - —
—— ~—~ ~~

new velocity old velocity ~ time step size ~
acceleration

28/42

Euler’'s Method
0000

Mathematical Formulation

® Example. Given an ODE:

dy
dw f(z,y)
with initial condition y(zo) = o
® Euler’s formula:
yier = yi + Az - f(@i,yi)
next value current value Step size slope

Tiy1 =x + Az
step size
® [nterpretation:

o f(xs,y:) = slope at current point

o Az = step size (small values!)

o step size X slope = predicted change in y
o Add to current y to get next y

29/42

Euler’'s Method
000e

Simple Example

® Toy example: Solve
dy _ o
de Y

with y(0) = 1, find y(1) using step size Az = 0.5.
® @ Initialize zp =0 and yo =1
® O First step (0 — Az)

f(xo,y0) =x0+yo =1 y1 = yot+Az-f(zo,y0) = 1.5 x1 =x0+Az=0.5

30/42

Euler’'s Method
000e

Simple Example

® Toy example: Solve
dy _ o
de Y

with y(0) = 1, find y(1) using step size Az = 0.5.

@ Initialize zo =0 and yo = 1
O First step (0 — Azx)

f(xo,y0) =x0+yo =1 y1 = yot+Az-f(zo,y0) = 1.5 x1 =x0+Az=0.5

® Second step (Az — 2Ax)
flxi,y1) =z14y1 =2 y2 = yi+Azx-f(z1,11) =25 x2 =x1+Az =1

So we have y(1) =~ y(z2) = 2.5.

31/42

Euler’'s Method
000e

Simple Example

® Toy example: Solve
dy_
dz Y
with y(0) = 1, find y(1) using step size Az = 0.5.
® @ Initialize zp =0 and yo =1
® @ First step (0 — Ax)

f(xo,y0) =x0+yo =1 y1 = yot+Az-f(zo,y0) = 1.5 x1 =x0+Az=0.5

® ® Second step (Az — 2Ax)
flxi,y1) =z14y1 =2 y2 = yi+Azx-f(z1,11) =25 x2 =x1+Az =1

So we have y(1) =~ y(z2) = 2.5.

® Hint (Keep in mind!):

yir1r = ¥+ Az - f(a,y) Tiy1 = x; + Az
~~ ~ —
next value current value Step size sloop

32/42

Cantilever Beam Deflection
000000000

Cantilever Beam Deflection

Engineering Task.
® (Calculate the deflection of a cantilever beam under uniform load.

® Needed for: Building codes, safety checks, material selection.

w=1x 10" kg/m

I T I I

[T

y (m)

33/42

Cantilever Beam Deflection
O@00000000

Cantilever Beam Deflection

Engineering Task.
® (Calculate the deflection of a cantilever beam under uniform load.

® Needed for: Building codes, safety checks, material selection.

w=1x 10" kg/m

o O O

]
I

y (m)

34/42

Cantilever Beam Deflection
[e]e] lelelelele]le]e]

Cantilever Beam Deflection

® Use Euler’s method to find deflection y(z) from z =0 to x = L.
® y(z) is downward deflection at point = (z is distance from fixed end).
® Given parameters:

o Uniform load: w =1 x 10* kg/m

o Beam length: L =4m

o Modulus: E =2 x 10" Pa (steel)

o Moment of inertia: T = 3.25 x 10™*m*

w=1x 10" kg/m

o O e

== T x (m)

[T

y (m)

35/42

Cantilever Beam Deflection
[e]e]e] lelelele]le]e]

Cantilever Beam Deflection

® Use Euler’s method to find deflection y(z) from z =0 to x = L.

———

constant

® 1 is distance from fixed end.

y(z) is downward deflection at point x.
® Given parameters:

o Uniform load: w =1 x 10* kg/m

o Beam length: L =4m

o Modulus: E =2 x 10! Pa (steel)

o Moment of inertia: T = 3.25 x 10~ *m*

® Compute the constant factor:

w 10*

- =6.41x 107"
24-E -1 24x (2x10') x (3.25 x 10-4) 6.41 > 10

CcC =

36/42

Cantilever Beam Deflection
0000800000
Euler’'s Method (Numerical)

® |dea: Given the step size Az = 0.25m, we start from y(0) = 0 and
update the deflection by

dy

Yi+1 = Yi + Az - —
next deflection current deflection ~ Step size \I/
sloop

update the position by

Tiy1l = T; + Ax
next position current position step size

where the sloop is given by
dy
dx
® Number of steps (repeat for loop)
& = % = 16 steps
® Compute the constant factor:

. w . 10%
T 24-E-T 7 24 x(2x1011) x (3.25 x 10—4)

= c(42® — 12La° 4+ 12L%2)

c =6.41x 107"

37/42

Cantilever Beam Deflection
[e]e]ele]e] lelele]e]

Python Programming

Compute the constant factor with Python programming.

® Given parameters: uniform load w = 1 x 10* kg/m, modulus
E =2 x 10 Pa, and moment of inertia I = 3.25 x 10™* m*.

® Compute the constant factor:

wo 10*
24-E-1 24 x (2 x 1011) x (3.25 x 104)

c= =6.41 x 10°°

1 import numpy as np

2

3 def const(w, E, I):

4 return w / (24 *x E x I)

5

6 w = 10 *xx 4 # uniform load

7 E =2 % 10 *x 11 # modulus

8 I = 3.25 * 10 **x (-4) # moment of inertia
9 ¢ = const(w, E, I) # constant factor
10 print (c)

38/42

Cantilever Beam Deflection
0000008000

Python Programming

® Update deflection and position:

dy
1= Yy + Az - —= Tiy1 = x; + Az
Yi+1 Yi A dz i+1 i ;
next current Step size SN\~ next current step size
sloop
with 2= = 16 steps and sloop

dy 3 2

— = c(4z” — +12L%z

0w =)

Axxkk3 — + 12%L**2xx

1 def sloop(c, L, x):
2 return c * (4%x*%*3 - 12xLkxx**2 + 12xL**2%x)
3
42 L =4 # beam length
5 delta_x = 0.25 # step size
6 n = int(L / delta_x) # number of steps
7 x = np.linspace(0, L, n + 1)
8y = np.zeros(n + 1)
9 for i in range(n):
10 y[i + 1] = y[i] + delta_x * sloop(c, L, x[i])

39/42

Cantilever Beam Deflection
0000000800
Numerical vs. Analytical Solution

Observing the first-order derivative of polynomials:

d .
d—i = c(42® — +12L%)
® Write down the analytical solution?

4

y(z) =c(z” — +6L%z%)

xk*k4 — + BkL*k*k2xx k%2

import numpy as np

= 10 **x 4

= 2 x 10 *xx 11

= 3.25 * 10 **x (-4)

= const(w, E, I)

elta_x = 0.25

= int(L / delta_x)

= np.linspace(0, L, n + 1)

= np.zeros(n + 1)

or i in range(l, n + 1):

y_analytical [i] = ¢ * (x[i]**4 - 4*Lxx[i]**3 + 6xL**2x*x[

i]*%2)

,_‘
O © N U A WD R
Hh<d X B oo HMmSs

=
N

40/42

Cantilever Beam Deflection
0000000080
Numerical Error Analysis

Deflection table (numerical vs. analytical solution).

€rror = |Yanalytical — Ynumerical| with | - | denoting absolute value
Distance z \ Analytical solution ~ Numerical solution Error

0.25 0.00003688 0
0.50 0.00014143 0.00007222 0.07 mm
0.75 0.00030491 0.00020763 e
1.00 0.00051923 0.00039784
1.25 0.00077687 0.00063502
1.50 0.00107091 0.00091196
1.75 0.00139506 0.00122206
2.00 0.00174359 0.00155929
2.25 0.00211140 0.00191827
2.50 0.00249399 0.00229417
2.75 0.00288744 0.00268279
3.00 0.00328846 0.00308053
3.25 0.00369434 0.00348438
3.50 0.00410296 0.00389193 0.21 mm
3.75 0.00451285 0.00430138 0.21 mm
4.00 0.00492308 0.00471154 0.21 mm

Note: 1meter = 1,000 millimeter (mm). /a2

Cantilever Beam Deflection
O00000000e

Quick Summary

Friday’s Class:
® Apply Euler's method to engineering problem
® Compute numerical vs. analytical solutions
® Understand error accumulation

® |mplement numerical methods with Python

42/42

	Introduction
	Bungee Jumping Velocity
	Euler's Method
	Cantilever Beam Deflection

