Applied Numerical Methods for Civil Engineering

CGN 3405 - 0002

Assignment 1: Euler’s Method, Engineering Modeling, and
Python Programming

Xinyu Chen
Assistant Professor

University of Central Florida

Question 1: Simple ODE
@000

Question 1: Simple ODE

Euler's method for a simple ODE:
Z—Z =z+y, y0)=1
(a) Hand Calculation (6 points)
Using Euler's method with a step size Az = 0.25, compute an approximate
value of y(1).
® Clearly list all intermediate steps:

o Values of z;

o Slopes f(xs,y:)

o Approximations y;
We use Euler's method: yi+1 = yi + f(x4,yi) - Az

Step (i) | o 1 2 3 4
T 0 0.25 0.50 0.75 1.00
i 1 1.25 1.625 2.1563 2.8828
i, yi) = @i + ys 1 1.50 2125 2.9063 -
yier = yi + flwi,) - Az | 125 1.625 2.15625 2.8828 -

Numerical result: y(1) ~ 2.8828
2/20

Question 1: Simple ODE
[e] Jele}

Question 1: Simple ODE

(b) Comparison and Interpretation (9 points)
The exact solution of this ODE is:

y(x) =2e" —xz -1

® Compute the exact value of y(1).
Exact Value: y(1) = 2e' — 1 — 1 = 2(2.71828) — 2 = 3.4366.

® Compare it with your numerical result from part (a).
Comparison: The numerical result (2.8828) is lower than the exact value
(3.4366).

® Briefly comment on the numerical error and the role of step size.
Euler's method uses a linear tangent; smaller step sizes reduce the
truncation error by tracking the curve's change more frequently.

[Key info should be included] A smaller step size Az gives more accurate
approximation.

3/20

Question 1: Simple ODE
[e]e] e}

Question 1: Simple ODE

(c) Python Programming (10 points)
Write a Python function that implements Euler's method for a general ODE:
% = f(z,y)
® Use your function to approximate y(1) for the given ODE.
® Verify that your Python result matches your hand calculation.
® Experiment with a smaller step size (Az = 0.1) and comment on the
change in accuracy.

Python function:

1 import numpy as np

2

3 def euler(x0, yO, x_end, delta_x):

4 steps = int((x_end - x0) / delta_x) # number of steps
5 x = np.linspace(x0, x_end, steps + 1) # linear space

6 y = np.zeros(steps + 1)

7 y[0] = yo

8 for i in range(steps):

9 yl[i+1] = y[i]l + (x[i] + y[i]l) #* delta_x

10 return x, y

4/20

Question 1: Simple ODE
[e]e]e]]

Question 1: Simple ODE

Use Python function to approximate y(1) and verify the result.

1 x0 =0

2 y0 =1

3 x_end = 1

4 delta_x = 0.25

5 x, y = euler(x0, yO, x_end, delta_x)
6 print(y[-1])

The output is

-

2.8828125

Experiment with a smaller step size (Az = 0.1).

-

delta_x = 0.1

2 x, y = euler(x0, y0O, x_end, delta_x)
3 print(y[-11)

The output is

3.1874849202

-

Comment on Az = 0.1: The approximation becomes closer to 3.4366 because
the error per step is smaller, and the cumulative error from the exact solution is

reduced.
5/20

Question 2: Bungee Jumping Velocity
00000000

Question 2: Bungee Jumping Velocity

A bungee jumper is modeled using Newton's second law with air resistance:

dv Cd 2

it~ m
where:
* m =170 kg
® g=9.81m/s
® ¢4 =0.25 kg/m
* v(0)=0
(a) Mathematical Formulation (6 points)
Explain briefly:
® What each term in the equation represents physically.
m: mass; g: gravitational acceleration; c4: drag coefficient.
® Why this problem is well-suited for a numerical method such as Euler's
method.
This is a non-linear ODE where velocity changes rapidly initially; Euler's
method provides a discrete approximation of this dynamic process.

6/20

Question 2: Bungee Jumping Velocity
0@000000

Question 2: Bungee Jumping Velocity

(b) Numerical Solution with Euler’s Method (9 points)
Using a time step At = 0.1 s:

® Compute the velocity of the jumper from ¢ = 0 to t = 20 seconds.
® Plot velocity vs. time.
® |dentify:

o The approximate terminal velocity

o The time when the velocity first exceeds 45 m/s (if it does)

Python function:

1 import numpy as np

2

3 def bungee_velocity(m, cd, delta_t, t_max):
4 g = 9.81

5 steps = int ((t_max - 0) / delta_t)

6 t = np.linspace (0, t_max, steps + 1)
7 v = np.zeros(steps + 1) # v(0) = 0

8 for i in range(steps):

9 a =g - (cd/m) *x (v[il*x2)

10 v[i+1] = v[i] + a * delta_t

11 return t, v

7/20

Question 2: Bungee Jumping Velocity
[e]e] lelelele]e)

Question 2: Bungee Jumping Velocity

Compute the velocity of the jumper from ¢ = 0 to ¢ = 20 seconds.

m = 70

cd = 0.25

delta_t = 0.1

t_max = 20

t, v = bungee_velocity(m, cd, delta_t, t_max)
print (v)

oA W N

The output is

1 [0. 0.981 1.9616563 2.94128198 3.91919229 4.89470655
5.86715007 6.83585598 7.80016707 8.75943757
9.7130348 10.66034086 11.60075412 12.53369073
13.45858594 14.3748954 15.28209625 16.17968822
17.06719454 17.94416271 18.81016522 19.6648001
20.5076914 21.33848947

2 52.34910077 52.35137636 52.35356686 52.35567544 52.35770517]

8/20

[e]e]e] lelelele)
Question 2: Bungee Jumping Velocity

Plot velocity vs. time

import matplotlib.pyplot as plt

plt.plot(t, v)

plt.xlabel ('Time (s)')

plt.ylabel ('Velocity (m/s)')
plt.savefig('velocity_mass70.pdf"')
plt.show ()

N oA W N R

Velocity (m/s)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (s)

9/20

Question 2: Bungee Jumping Velocity
[e]e]e]e] Telele)

Question 2: Bungee Jumping Velocity

Identify the approximate terminal velocity

m Cd

acceleration = 0

mg 70 x 9.81
=,/— =4/ ——— =5241
v cw V025 m/s

1 v_term = np.sqrt((70 * 9.81) / 0.25)
2 print(v_term)

In this case:

10/20

Question 2: Bungee Jumping Velocity
[e]e]e]e]e] lele)

Question 2: Bungee Jumping Velocity

Identify the time when the velocity first exceeds 45 m/s

1 for i in range(t.shape[0]):
if v[i] <= 45 and v[i + 1] > 45:
3 print (t[i + 1])

N

1 6.9

The jumper exceeds 45 m/s at approximately ¢ ~ 6.9 seconds.

11/20

Question 2: Bungee Jumping Velocity

[e]e]e]e]e]e] Je]

Question 2: Bungee Jumping Velocity

(c) Python Programming and Safety Discussion (10 points)
® Write a Python function that computes velocity using Euler’'s method.
® Modify the mass to m = 80 kg and repeat the simulation.
® Compare results and discuss:

o How mass affects terminal velocity
o Whether the jumper exceeds the safe velocity limit

Mass Comparison: Increasing mass to 80 kg increases terminal velocity (to
~ 56.03m/s).

v_term = np.sqrt((80 * 9.81) / 0.25)
2 print(v_term)

-

Safety: Higher mass results in faster acceleration and a higher impact velocity,
potentially exceeding safe limits more quickly.

12/20

Question 2: Bungee Jumping Velocity
0000000e

Question 2: Bungee Jumping Velocity

import matplotlib.pyplot as plt

t, v = bungee_velocity (70, 0.25, 0.1, 20)
plt.plot(t, v, 'blue')

t, v = bungee_velocity (80, 0.25, 0.1, 20)
plt.plot(t, v, 'red')

plt.xlabel ('Time (s)')
plt.ylabel('Velocity (m/s)')

plt.show ()

© N AW N R

Velocity (m/s)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (s)

13/20

Question 3: Cantilever Beam Deflection
0000000

Question 3: Cantilever Beam Deflection

A cantilever beam of length L = 5 m is subjected to a uniform load. Given:
® Uniform load: w = 2 x 10* kg/m
® Modulus of elasticity: E =2 x 10'* Pa
® Moment of inertia: 1 = 3.25 x 107* m*
The governing equation is:
dy
=
with y(0) = 0.

w

C(4$3 — 12L:E2 —+ 12L2x)7 C = m

w =2 x 10* kg/m

Sl

s

y (m) 14/20

Question 3: Cantilever Beam Deflection
(o] lelelele]e]

Question 3: Cantilever Beam Deflection

(a) Constant Evaluation (6 points)
® Compute the constant c.

® Explain its physical meaning in the context of beam deflection.

w -5 -3
= —— — =1282x1
c o E T 82x 10" °m

1 import numpy as np

2

3 def const (w, E, I):

4 return w / (24 * E *x I)

5

6w =2 % 10 **x 4 # uniform load

7 E =2 % 10 *x 11 # modulus

8 I = 3.256 *x 10 **x (-4) # moment of inertia
9 ¢ = const (w, E, I) # constant factor

10 print (c)
Meaning: This constant scales the deflection based on load and beam stiffness.

15/20

Question 3: Cantilever Beam Deflection
00e0000

Question 3: Cantilever Beam Deflection

(b) Euler’'s Method Solution (9 points) Using Euler’'s method with
Az =0.125 m:

® Compute the beam deflection y(z) from x =0 to x = L.
® Tabulate the numerical deflection values.

Python function:

1 def sloop(c, L, x):

2 return c * (4*x*%3 - 12*%L*xx**2 + 12*L**2%x)
3

4 L =5 # beam length

5 delta_x = 0.125 # step size

6 n = int(L / delta_x) # number of steps

7 x = np.linspace(0, L, n + 1)

8y = np.zeros(n + 1)

9 for i in range(n):

=
S)

y[i + 1] = y[i] + delta_x * sloop(c, L, x[i])

16/20

Question 3: Cantilever Beam Deflection
[e]e] [e]e)

Question 3: Cantilever Beam Deflection

Table of the numerical deflection values

x; 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875
Yi 0 0 0.00006 0.00017 0.00034 0.00056 0.00082 0.00113
T; 1 1.125 1.25 1.375 1.5 1.625 1.75 1.875
Yi 0.00148 0.00187 0.00230 0.00276 0.00326 0.00379 0.00434 0.00492
x; 2 2125 2.25 2.375 25 2.625 2.75 2.875
i 0.00553 0.00616 0.00681 0.00747 0.00816 0.00886 0.00958 0.01030
x; 3 3.125 3.25 3.375 35 3.625 3.75 3.875
Yi 0.0110 0.0118 0.0126 0.0133 0.0141 0.0149 0.0157 0.0164
x; 4 4.125 4.25 4.375 4.5 4.625 4.75 4.875
i 0.0172 0.0180 0.0188 0.0196 0.0204 0.0212 0.0220 0.0228
x; 5

vi 0.0236

17/20

Question 3: Cantilever Beam Deflection
[e]e]e]e] lele]

Question 3: Cantilever Beam Deflection

(c) Python Programming and Error Analysis (10 points)

® Write Python code to compute the deflection numerically. [see Question
3b]

® Compute the analytical solution:
y(z) = c(z* — 4La® + 6L7z?)
® Plot numerical vs. analytical solutions.

® Compute and comment on the maximum absolute error.

Python function:

1 import numpy as np

2

3 ¢ = const(w, E, I)

4 n = int(L / delta_x)

5 x = np.linspace(0, L, n + 1)

6 y_analytical = np.zeros(m + 1)

7 for i in range(l, n + 1):

8 y_analytical [i] = ¢ * (x[il**4 - 4*L*x[i]#**3 + 6*L**2xx[

i]*%2)

18/20

Question 3: Cantilever Beam Deflection
00000e

Question 3: Cantilever Beam Deflection

Plot numerical vs. analytical solutions

import matplotlib.pyplot as plt

plt.plot(x, y, 'blue')
plt.plot(x, y_analytical, 'red')
plt.xlabel ('Distance (m)')
plt.ylabel('Deflection (m)"')
plt.savefig('deflection.pdf')
plt.show ()

W N oA W N

0.025

0.020

g
o
=4
@

0.010

Deflection (m)

0.005

0.000

o
-

2 3 4
Distance (m) 19 / 20

w

Question 3: Cantilever Beam Deflection
000000

Question 3: Cantilever Beam Deflection

Compute the maximum absolute error:

1 np.max(np.abs(y - y_analytical))
The output is

1 np.float64(0.00040564903846154396)

Error Comment: The maximum error is at the end of the beam (x = L). The
numerical method slightly lags behind the exact solution because the slope is
always calculated using the previous point’s coordinates.

20/20

	Question 1: Simple ODE
	Question 2: Bungee Jumping Velocity
	Question 3: Cantilever Beam Deflection

