
Applied Numerical Methods for Civil Engineering

CGN 3405 - 0002

Assignment 1: Euler’s Method, Engineering Modeling, and
Python Programming

Xinyu Chen

Assistant Professor

University of Central Florida

Question 1: Simple ODE Question 2: Bungee Jumping Velocity Question 3: Cantilever Beam Deflection

Question 1: Simple ODE

Euler’s method for a simple ODE:

dy

dx
= x+ y, y(0) = 1

(a) Hand Calculation (6 points)
Using Euler’s method with a step size ∆x = 0.25, compute an approximate
value of y(1).

• Clearly list all intermediate steps:

◦ Values of xi

◦ Slopes f(xi, yi)
◦ Approximations yi

We use Euler’s method: yi+1 = yi + f(xi, yi) ·∆x

Step (i) 0 1 2 3 4

xi 0 0.25 0.50 0.75 1.00
yi 1 1.25 1.625 2.1563 2.8828

f(xi, yi) = xi + yi 1 1.50 2.125 2.9063 -
yi+1 = yi + f(xi, yi) ·∆x 1.25 1.625 2.15625 2.8828 -

Numerical result: y(1) ≈ 2.8828
2 / 20

Question 1: Simple ODE Question 2: Bungee Jumping Velocity Question 3: Cantilever Beam Deflection

Question 1: Simple ODE

(b) Comparison and Interpretation (9 points)
The exact solution of this ODE is:

y(x) = 2ex − x− 1

• Compute the exact value of y(1).
Exact Value: y(1) = 2e1 − 1− 1 = 2(2.71828)− 2 = 3.4366.

• Compare it with your numerical result from part (a).
Comparison: The numerical result (2.8828) is lower than the exact value
(3.4366).

• Briefly comment on the numerical error and the role of step size.
Euler’s method uses a linear tangent; smaller step sizes reduce the
truncation error by tracking the curve’s change more frequently.

[Key info should be included] A smaller step size ∆x gives more accurate
approximation.

3 / 20

Question 1: Simple ODE Question 2: Bungee Jumping Velocity Question 3: Cantilever Beam Deflection

Question 1: Simple ODE

(c) Python Programming (10 points)
Write a Python function that implements Euler’s method for a general ODE:

dy

dx
= f(x, y)

• Use your function to approximate y(1) for the given ODE.

• Verify that your Python result matches your hand calculation.

• Experiment with a smaller step size (∆x = 0.1) and comment on the
change in accuracy.

Python function:

1 import numpy as np

2

3 def euler(x0, y0, x_end , delta_x):

4 steps = int((x_end - x0) / delta_x) # number of steps

5 x = np.linspace(x0, x_end , steps + 1) # linear space

6 y = np.zeros(steps + 1)

7 y[0] = y0

8 for i in range(steps):

9 y[i+1] = y[i] + (x[i] + y[i]) * delta_x

10 return x, y

4 / 20

Question 1: Simple ODE Question 2: Bungee Jumping Velocity Question 3: Cantilever Beam Deflection

Question 1: Simple ODE

Use Python function to approximate y(1) and verify the result.

1 x0 = 0

2 y0 = 1

3 x_end = 1

4 delta_x = 0.25

5 x, y = euler(x0 , y0, x_end , delta_x)

6 print(y[-1])

The output is

1 2.8828125

Experiment with a smaller step size (∆x = 0.1).

1 delta_x = 0.1

2 x, y = euler(x0 , y0, x_end , delta_x)

3 print(y[-1])

The output is

1 3.1874849202

Comment on ∆x = 0.1: The approximation becomes closer to 3.4366 because
the error per step is smaller, and the cumulative error from the exact solution is
reduced.

5 / 20

Question 1: Simple ODE Question 2: Bungee Jumping Velocity Question 3: Cantilever Beam Deflection

Question 2: Bungee Jumping Velocity

A bungee jumper is modeled using Newton’s second law with air resistance:

dv

dt
= g − cd

m
v2

where:

• m = 70 kg

• g = 9.81 m/s2

• cd = 0.25 kg/m

• v(0) = 0

(a) Mathematical Formulation (6 points)
Explain briefly:

• What each term in the equation represents physically.
m: mass; g: gravitational acceleration; cd: drag coefficient.

• Why this problem is well-suited for a numerical method such as Euler’s
method.
This is a non-linear ODE where velocity changes rapidly initially; Euler’s
method provides a discrete approximation of this dynamic process.

6 / 20

Question 1: Simple ODE Question 2: Bungee Jumping Velocity Question 3: Cantilever Beam Deflection

Question 2: Bungee Jumping Velocity

(b) Numerical Solution with Euler’s Method (9 points)
Using a time step ∆t = 0.1 s:

• Compute the velocity of the jumper from t = 0 to t = 20 seconds.

• Plot velocity vs. time.

• Identify:

◦ The approximate terminal velocity
◦ The time when the velocity first exceeds 45 m/s (if it does)

Python function:

1 import numpy as np

2

3 def bungee_velocity(m, cd, delta_t , t_max):

4 g = 9.81

5 steps = int((t_max - 0) / delta_t)

6 t = np.linspace(0, t_max , steps + 1)

7 v = np.zeros(steps + 1) # v(0) = 0

8 for i in range(steps):

9 a = g - (cd/m) * (v[i]**2)

10 v[i+1] = v[i] + a * delta_t

11 return t, v

7 / 20

Question 1: Simple ODE Question 2: Bungee Jumping Velocity Question 3: Cantilever Beam Deflection

Question 2: Bungee Jumping Velocity

Compute the velocity of the jumper from t = 0 to t = 20 seconds.

1 m = 70

2 cd = 0.25

3 delta_t = 0.1

4 t_max = 20

5 t, v = bungee_velocity(m, cd, delta_t , t_max)

6 print(v)

The output is

1 [0. 0.981 1.9616563 2.94128198 3.91919229 4.89470655

5.86715007 6.83585598 7.80016707 8.75943757

9.7130348 10.66034086 11.60075412 12.53369073

13.45858594 14.3748954 15.28209625 16.17968822

17.06719454 17.94416271 18.81016522 19.6648001

20.5076914 21.33848947 ...

2 52.34910077 52.35137636 52.35356686 52.35567544 52.35770517]

8 / 20

Question 1: Simple ODE Question 2: Bungee Jumping Velocity Question 3: Cantilever Beam Deflection

Question 2: Bungee Jumping Velocity

Plot velocity vs. time

1 import matplotlib.pyplot as plt

2

3 plt.plot(t, v)

4 plt.xlabel('Time (s)')
5 plt.ylabel('Velocity (m/s)')
6 plt.savefig('velocity_mass70.pdf')
7 plt.show()

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (s)

0

10

20

30

40

50

Ve
lo

cit
y

(m
/s

)

9 / 20

Question 1: Simple ODE Question 2: Bungee Jumping Velocity Question 3: Cantilever Beam Deflection

Question 2: Bungee Jumping Velocity

Identify the approximate terminal velocity

a = g − cd
m

v2 = 0︸ ︷︷ ︸
acceleration = 0

⇒ v =

√
mg

cd

In this case:

v =

√
mg

cd
=

√
70× 9.81

0.25
= 52.41m/s

1 v_term = np.sqrt ((70 * 9.81) / 0.25)

2 print(v_term)

10 / 20

Question 1: Simple ODE Question 2: Bungee Jumping Velocity Question 3: Cantilever Beam Deflection

Question 2: Bungee Jumping Velocity

Identify the time when the velocity first exceeds 45 m/s

1 for i in range(t.shape [0]):

2 if v[i] <= 45 and v[i + 1] > 45:

3 print(t[i + 1])

1 6.9

The jumper exceeds 45m/s at approximately t ≈ 6.9 seconds.

11 / 20

Question 1: Simple ODE Question 2: Bungee Jumping Velocity Question 3: Cantilever Beam Deflection

Question 2: Bungee Jumping Velocity

(c) Python Programming and Safety Discussion (10 points)

• Write a Python function that computes velocity using Euler’s method.

• Modify the mass to m = 80 kg and repeat the simulation.

• Compare results and discuss:

◦ How mass affects terminal velocity
◦ Whether the jumper exceeds the safe velocity limit

Mass Comparison: Increasing mass to 80 kg increases terminal velocity (to
≈ 56.03m/s).

1 v_term = np.sqrt ((80 * 9.81) / 0.25)

2 print(v_term)

Safety: Higher mass results in faster acceleration and a higher impact velocity,
potentially exceeding safe limits more quickly.

12 / 20

Question 1: Simple ODE Question 2: Bungee Jumping Velocity Question 3: Cantilever Beam Deflection

Question 2: Bungee Jumping Velocity

1 import matplotlib.pyplot as plt

2

3 t, v = bungee_velocity (70, 0.25, 0.1, 20)

4 plt.plot(t, v, 'blue')
5 t, v = bungee_velocity (80, 0.25, 0.1, 20)

6 plt.plot(t, v, 'red')
7 plt.xlabel('Time (s)')
8 plt.ylabel('Velocity (m/s)')
9 plt.show()

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (s)

0

10

20

30

40

50

Ve
lo

cit
y

(m
/s

)

13 / 20

Question 1: Simple ODE Question 2: Bungee Jumping Velocity Question 3: Cantilever Beam Deflection

Question 3: Cantilever Beam Deflection

A cantilever beam of length L = 5 m is subjected to a uniform load. Given:

• Uniform load: w = 2× 104 kg/m

• Modulus of elasticity: E = 2× 1011 Pa

• Moment of inertia: I = 3.25× 10−4 m4

The governing equation is:

dy

dx
= c(4x3 − 12Lx2 + 12L2x), c =

w

24 · E · I
with y(0) = 0.

w = 2× 104 kg/m

y(x)

x (m)

y (m)

x = 0

L = 5m

14 / 20

Question 1: Simple ODE Question 2: Bungee Jumping Velocity Question 3: Cantilever Beam Deflection

Question 3: Cantilever Beam Deflection

(a) Constant Evaluation (6 points)

• Compute the constant c.

• Explain its physical meaning in the context of beam deflection.

c =
w

24 · E · I = 1.282× 10−5 m−3

1 import numpy as np

2

3 def const (w, E, I):

4 return w / (24 * E * I)

5

6 w = 2 * 10 ** 4 # uniform load

7 E = 2 * 10 ** 11 # modulus

8 I = 3.25 * 10 ** (-4) # moment of inertia

9 c = const (w, E, I) # constant factor

10 print (c)

Meaning: This constant scales the deflection based on load and beam stiffness.

15 / 20

Question 1: Simple ODE Question 2: Bungee Jumping Velocity Question 3: Cantilever Beam Deflection

Question 3: Cantilever Beam Deflection

(b) Euler’s Method Solution (9 points) Using Euler’s method with
∆x = 0.125 m:

• Compute the beam deflection y(x) from x = 0 to x = L.

• Tabulate the numerical deflection values.

Python function:

1 def sloop(c, L, x):

2 return c * (4*x**3 - 12*L*x**2 + 12*L**2*x)

3

4 L = 5 # beam length

5 delta_x = 0.125 # step size

6 n = int(L / delta_x) # number of steps

7 x = np.linspace(0, L, n + 1)

8 y = np.zeros(n + 1)

9 for i in range(n):

10 y[i + 1] = y[i] + delta_x * sloop(c, L, x[i])

16 / 20

Question 1: Simple ODE Question 2: Bungee Jumping Velocity Question 3: Cantilever Beam Deflection

Question 3: Cantilever Beam Deflection

Table of the numerical deflection values

xi 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875
yi 0 0 0.00006 0.00017 0.00034 0.00056 0.00082 0.00113

xi 1 1.125 1.25 1.375 1.5 1.625 1.75 1.875
yi 0.00148 0.00187 0.00230 0.00276 0.00326 0.00379 0.00434 0.00492

xi 2 2.125 2.25 2.375 2.5 2.625 2.75 2.875
yi 0.00553 0.00616 0.00681 0.00747 0.00816 0.00886 0.00958 0.01030

xi 3 3.125 3.25 3.375 3.5 3.625 3.75 3.875
yi 0.0110 0.0118 0.0126 0.0133 0.0141 0.0149 0.0157 0.0164

xi 4 4.125 4.25 4.375 4.5 4.625 4.75 4.875
yi 0.0172 0.0180 0.0188 0.0196 0.0204 0.0212 0.0220 0.0228

xi 5
yi 0.0236

17 / 20

Question 1: Simple ODE Question 2: Bungee Jumping Velocity Question 3: Cantilever Beam Deflection

Question 3: Cantilever Beam Deflection

(c) Python Programming and Error Analysis (10 points)

• Write Python code to compute the deflection numerically. [see Question
3b]

• Compute the analytical solution:

y(x) = c(x4 − 4Lx3 + 6L2x2)

• Plot numerical vs. analytical solutions.

• Compute and comment on the maximum absolute error.

Python function:

1 import numpy as np

2

3 c = const(w, E, I)

4 n = int(L / delta_x)

5 x = np.linspace(0, L, n + 1)

6 y_analytical = np.zeros(n + 1)

7 for i in range(1, n + 1):

8 y_analytical[i] = c * (x[i]**4 - 4*L*x[i]**3 + 6*L**2*x[

i]**2)

18 / 20

Question 1: Simple ODE Question 2: Bungee Jumping Velocity Question 3: Cantilever Beam Deflection

Question 3: Cantilever Beam Deflection

Plot numerical vs. analytical solutions

1 import matplotlib.pyplot as plt

2

3 plt.plot(x, y, 'blue')
4 plt.plot(x, y_analytical , 'red')
5 plt.xlabel('Distance (m)')
6 plt.ylabel('Deflection (m)')
7 plt.savefig('deflection.pdf')
8 plt.show()

0 1 2 3 4 5
Distance (m)

0.000

0.005

0.010

0.015

0.020

0.025

De
fle

ct
io

n
(m

)

19 / 20

Question 1: Simple ODE Question 2: Bungee Jumping Velocity Question 3: Cantilever Beam Deflection

Question 3: Cantilever Beam Deflection

Compute the maximum absolute error:

1 np.max(np.abs(y - y_analytical))

The output is

1 np.float64 (0.00040564903846154396)

Error Comment: The maximum error is at the end of the beam (x = L). The
numerical method slightly lags behind the exact solution because the slope is
always calculated using the previous point’s coordinates.

20 / 20

	Question 1: Simple ODE
	Question 2: Bungee Jumping Velocity
	Question 3: Cantilever Beam Deflection

